
Failover, Load Sharing and Server Architecture in SIP Telephony

Kundan Singh and Henning Schulzrinne
Department of Computer Science, Columbia University

1214 Amsterdam Ave, Mail Code 0401, New York, NY 10027, USA
Email: {kns10,hgs}@cs.columbia.edu, tel:+1-212-9397000, fax:+1-212-6660140

Abstract

We apply some of the existing web server redundancy
techniques for high service availability and scalability
to the relatively new IP telephony context. The pa-
per compares various failover and load sharing meth-
ods for registration and call routing servers based on
the Session Initiation Protocol (SIP). In particular,
we consider SIP server failover techniques based on
the clients, DNS (Domain Name Service), database
replication and IP address takeover, and load sharing
techniques using DNS, SIP identifiers, network ad-
dress translators and servers with same IP addresses.
We describe our two-stage reliable and scalable SIP
server architecture in which the first stage proxies the
request to one of the second stage server group based
on the destination user identifier. We quantitatively
evaluate the performance improvement of the load
sharing architecture using our SIP server. We quanti-
tatively compare the effect of SIP server architecture
such as event-based and thread pool. Additionally,
we present an overview of the failover mechanism we
implemented in our test-bed using the open source
MySQL database.

Keywords: Availability; scalability; failover; load
sharing; SIP

1 Introduction

The Session Initiation Protocol (SIP) [1] is a dis-
tributed signaling protocol for IP telephony. SIP-
based telephony services have been proposed as an
alternative to the classical PSTN (public switched
telephone network) and offers a number of advantages
over the PSTN [2]. Traditionally, telephony service
is perceived as more reliable than the Internet-based
services such as web and email. To ensure wide ac-
ceptance of SIP among carriers, SIP servers should
demonstrate similar quantifiable guarantees on ser-
vice availability and scalability. For example, PSTN
switches have a “5 nines” reliability requirement, i.e.,

are available for 99.999% of the time, which implies
at most 5 minutes of outage a year.

The SIP proxy servers are more light-weight com-
pared to PSTN switches because they only route call
signaling messages without maintaining any per-call
state. The SIP proxy server of a domain is responsi-
ble for forwarding the incoming requests destined for
the logical address of the form user@domain to the
current transport address of the device used by this
logical entity, and forwarding the responses back to
the request sender. Consider the example shown in
Fig. 1. When a user, Bob, starts his SIP phone, it
registers his unique identifier bob@home.com to the
SIP server in the home.com domain. The server
maintains the mapping between his identifier and
his phone’s IP address. When another user, Alice,
calls sip:bob@home.com, her phone does a DNS (Do-
main Name Service) lookup for the SIP service [3] of
home.com and sends the SIP call initiation message to
the resolved server IP address. The server “proxies”
the call to Bob’s currently registered phone. Once
Bob picks up the handset, the audio packets can be
sent directly between the two phones without going
through the server. Further details [2, 1] of the call
are skipped for brevity.

Server ClientClient

Alice

(2) DNS

(3) INVITE

Proxy/
registrar

database

(1) REGISTER

(4) INVITE

Bob

DNS DB

Figure 1: An example SIP call

If the server fails for some reason, the call initiation
or termination messages cannot be proxied correctly.
(Note that the call termination message need not tra-
verse proxy servers unless the servers record-route.)
We can improve the service availability by adding a

1

second server that automatically takes over in case of
the failure of the first server. Secondly, if there are
thousands of registered users and a single server can-
not handle the load, then a second server can work
along with the first server such that the load is di-
vided between the two. Our goal is to provide the car-
rier grade capacity of one to ten million BHCA (busy
hour call attempts) for IP telephony using commodity
hardware. We describe some of the failover and load
sharing techniques for SIP servers in Sections 3 and
4, respectively. These techniques also apply beyond
telephony, for example, for SIP-based instant mes-
saging and presence that use the same SIP servers for
registration and message routing. Section 5 quantita-
tively evaluates the performance improvement of our
load sharing architecture. Section 6 further evaluates
and improves the performance based on the software
architecture such as event-based and thread pool.

2 Related Work

Failover and load sharing for web servers is a well-
studied problem [4, 5, 6, 7]. TCP connection mi-
gration [8], IP address takeover [9] and MAC ad-
dress takeover [10] have been proposed for high avail-
ability. Load sharing via connection dispatchers [11]
and HTTP content or session-based request redirec-
tion [12, 13, 10] are available for web servers. Some
of these techniques such as DNS-based load shar-
ing [14, 15] also apply to other Internet services
like email and SIP. Although SIP is an HTTP like
request-response protocol, there are certain funda-
mental differences that make the problem slightly dif-
ferent. For example, SIP servers can use both TCP
and UDP transport, the call requests and responses
are usually not bandwidth intensive, caching of re-
sponses is not useful, and the volume of data up-
date (REGISTER message) and lookup (INVITE mes-
sage) is often similar, unlike common read-dominated
database and web applications.

For SIP server failover, IP anycast does not work
well with TCP and the backend database requires
synchronization between the primary and backup
servers [16]. Section 3.5 describes how to apply the
IETF’s Reliable Server Pooling (Rserpool [17, 18, 19])
architecture for SIP telephony. The primary disad-
vantage of Rserpool is that it requires new protocol
support in the clients.

SIP-based telephony services exhibit three bottle-
necks to scalability: signaling, real-time media data
and gateway services. The signaling part requires
high request processing capacity in the SIP servers.
The data part requires enough network bandwidth

and capacity (CPU and memory) in the end systems.
The gateway part requires optimal placement of me-
dia gateways and switching components [20]. This
paper focuses on the signaling part only. SIP allows
redirecting a request to a less loaded server using the
302 response, or transferring an existing call dialog
to a less loaded endpoint or gateway [1, 21].

Optimizations such as memory pool, counted
strings and lazy parsing have been proposed for
SIP servers [22, 23]. These optimizations can fur-
ther improve our load sharing performance. Event
and thread-based architectures, particularly for web
servers, are well known in systems research. We study
the effect of server architecture on SIP server per-
formance using commodity hardware and standard
POSIX threads.

3GPP’s IP Multimedia Subsystem (IMS) uses SIP
for call control to support millions of users. It defines
different server roles such as outbound proxy in vis-
ited network, interrogating proxy as the first point of
contact for incoming calls in the home network, and
serving proxy providing services based on subscriber’s
profile.

Identifier-based load balancing has been used for
emails. We combine this with DNS-based server re-
dundancy for a two-stage reliable and scalable archi-
tecture. Novelty of our work lies in the application
of existing techniques to relatively new Internet tele-
phony, and quantitative performance evaluation of
the architecture for SIP-based telephony.

We describe and compare some of these techniques
in the context of SIP. We also present an overview
of our implementation of failover and describe some
practical issues.

3 Availability: Failover

High availability is achieved by adding a backup com-
ponent such as the SIP server or user record database.
Depending on where the failure is detected and who
does the failover, there are various design choices:
client-based, DNS-based, database failover and IP
takeover.

3.1 Client-based failover

In the client-based failover (Fig. 2), Bob’s phone
knows the IP addresses of the primary and the backup
servers, P1 and P2. It registers with both, so that
either server can be used to reach Bob. Similarly, Al-
ice’s phone also knows about the two servers. It first
tries P1, and if that fails it switches to P2.

2

P1

(2) REGISTER

P2

(1) REGISTER

BobAlice

(4) INVITE

(3) INVITE

Figure 2: Client-based
failover

P2

P1

Bob

(1) REGISTER

(2) REGISTER

(4) INVITE

(5) INVITE

(3)
Alice

example.com
_sip._udp SRV 0 0 p1.example.com

 SRV 1 0 p2.example.com

DNS

Figure 3: DNS-based
failover

All failover logic is built into the client. The servers
operate independently of each other. This method is
used by the Cisco IP phones [24]. Configuring phones
with the two server addresses works well within a
domain. However, DNS is used to allow adding or
replacing backup servers without changing the phone
configurations as described next.

3.2 DNS-based failover

DNS-based failover using NAPTR and SRV records
is the most clean and hence, preferred way, to
failover [3]. For instance, Alice’s phone can retrieve
the DNS SRV [14] record for sip. udp.home.com to
get the two server addresses (Fig. 3). In the exam-
ple, P1 will be preferred over P2 by assigning a lower
numeric priority value to P1.

Alternatively, dynamic DNS can be used to update
the A-record for home.com from the IP address of P1

to P2, when P1 fails. P2 can periodically monitor P1

and update the record when P1 is dead. Setting a
low time-to-live (TTL) for the A-record bindings can
reduce the failover latency due to DNS caching [25].

3.3 Failover based on database repli-
cation

Slave
Master

D2

(4)

replication
database

(3)

(2)

D1

P1

P2

Alice Bob

(6) INVITE

(1) REGISTER(5) INVITE

Figure 4: Failover based on database replication

Not all the SIP phones are capable of register-
ing with multiple servers. Moreover, to keep the
server failover architecture independent of the client
configuration, the client can register with only P1,
which can then propagate the registration to P2. If a

database is used to store the user records, then repli-
cation can be used as shown in Fig. 4. Bob’s phone
registers with the primary server, P1, which stores the
mapping in the database D1. The secondary server,
P2, uses the database D2. Any change in D1 is prop-
agated to D2. When P1 fails, P2 can take over and
use D2 to proxy the call to Bob. There could be small
delay before D2 gets the updated record from D1.

3.4 Failover using IP address takeover

If DNS-based failover cannot be used due to some
reason (e.g., not implemented in the client), then IP
takeover [9] can also be used (Fig. 5). Both P1 and P2

have identical configuration but run on different hosts
on the same Ethernet. Both servers are configured to
use the external master database, D1. The slave D2

is replicated from D1. The clients know the server IP
address as P1’s 10.1.1.1 in this example.

P1

P2

10.1.1.1

10.1.1.1
D2

D1

10.1.1.3

10.1.1.4
10.1.1.2

Master

Slave

Figure 5: When
the primary server
fails

P1

10.1.1.1

P2

10.1.1.2

D1

D2

10.1.1.3

10.1.1.4
Slave

Master

Figure 6: When
the master
database fails

10.1.1.2

D1

P1

P2

D2

10.1.1.1

10.1.1.1

Master

Slave

Figure 7:
co-located
database
and proxy

P2 periodically monitors the activity of P1. When
P1 fails, P2 takes over the IP address 10.1.1.1. Now,
all requests sent to the server address will be received
and processed by P2. When D1 fails, P1 detects and
switches to D2 (Fig. 6). IP takeover is not used by D2

since the SIP servers can be modified to switch over
when D1 fails. There can be a small failover latency
due to the ARP cache.

The architecture is transparent to the rest of the
network (clients and DNS) and can be implemented
without external assumptions. However, if the repli-
cation is only from the master to the slave, it requires
modification in the SIP server software to first try D1,
and if that fails use D2 so that all the updates are
done to the master server. To avoid replicating the
database, P1 can propagate the REGISTER message
also to P2.

Alternatively, to avoid the server modification, the
server and the associated database can be co-located
on the same host as shown in Fig. 7. If the primary
host fails, both P2 and D2 take over. P1 always uses

3

D1, whereas P2 always uses D2.

3.5 Reliable server pooling

In the context of IETF’s Reliable Server Pooling ar-
chitecture [17], Fig. 8 shows the client phone as the
pool user(PU), P1 and P2 as the pool elements (PE)
in the “SIP server pool”, and D1 and D2 as PEs in
the “database pool”. P1 and P2 register with their
home name server, NS2, which supervises them, and
informs the other name servers (NS) about these PEs.
Similarly, D1 and D2 also register with the NS. The
SIP servers are the pool users of the “database pool”.
A pool element is removed from the pool if it is out
of service.

SIP server pool

Database pool

Name Servers

name resolution register server
in the pool

register

access server pool

access server poo

Client (PU)

Pool elements

Pool elements

P1 P2

NS1 NS2 DB2DB1

Figure 8: Reliable server pooling for SIP

When the client wants to contact the “SIP server
pool”, it queries one of the name servers, NS1, to get
the list of P1 and P2 with relative priority for failover
and load sharing. The client chooses to connect to
P1 and sends the call invitation. If P1 fails, the client
detects this and sends the message to P2. For stateful
services, P1 can exchange state information with an-
other server, P2, and return the backup server, P2, to
the client in the initial message exchange. This way
the client knows which backup server to use in the
case of failure. P1 can also give a signed cookie sim-
ilar to HTTP cookie to the client, which sends it to
the new failover server, P2, in the initial message ex-
change. This is needed for call stateful services such
as conferencing, but not for SIP proxy server failover.

The SIP server, P1, queries the NS to get the list,
D1 and D2, for the “database pool”. D1 and D2 are
backed up and replicated by each other, so they can
return this backup server information in the initial
message exchange.

The primary limitation is that this requires new
protocol support for name resolution and aggregate
server access in the clients. A translator can be
used to interoperate with the clients that do not sup-
port reliable server pooling. However, this makes the
translator as a single point of failure between the

client and the server, hence limiting the reliability.
Secondly, the name space is flat unlike DNS hierar-
chy, and is designed for a limited scale (e.g., within
an enterprise), but may be combined with wide area
DNS based name resolution, for example. More work
is needed in that context.

3.6 Implementation

We have used some of the above techniques in our
Columbia InterNet Extensible Multimedia Architec-
ture (CINEMA). The architecture [26, 27] consists
of our SIP server, sipd and a MySQL database for
user profile and system configuration. Other compo-
nents such as the PSTN gateway and media servers
are outside the scope of this paper. The configura-
tion and management are done via a web interface
that accesses various CGI (Common Gateway Inter-
face) scripts written in Tcl on the web server. All the
servers may run on a single machine for an enterprise
setup.

SRV 0 0 5060 phone.cs
SRV 1 0 5060 sip2.cs

D1

_sip._udp

P1 P2

D2
Web
scripts

phone.cs.columbia.edu sip2.cs.columbia.edu

REGISTER proxy1=phone.cs

backup=sip2.cs

Master Slave

Web
scripts

Figure 9: Failover in CINEMA

For failover, we use two sets of identical servers
on two different machines as shown in Fig. 9. The
database and SIP server share the same host. The
databases are replicated using MySQL 4.0 replica-
tion [28] such that both D1 and D2 are master and
slave of each other. MySQL propagates the binary
log of the SQL commands of master to the slave, and
the slave runs these commands again to do the repli-
cation. Our technical report [29] contains the details
of the two-way replication.

MySQL 4.0 does not support any locking proto-
col between the master and the slave to guarantee
the atomicity of the distributed updates. However,
the updates from the SIP server are additive, i.e.,
each registration from each device is one database
record, so having two devices for the same user

4

register with two database replicas does not inter-
fere with the other registration. For example, if
bob@home.com registers bob@location1.com with D1

and bob@location2.com with D2, both, D1 and D2,
will propagate the updates to each other such that
both D1 and D2 will have both of Bob’s locations.
There is a slight window of vulnerability when one
contact is added from D1 and the same contact is re-
moved in D2, then after the propagation of updates
the two databases will be inconsistent with different
contacts for the user. It turns out that this does not
occur for the simple failover as we describe next. We
can safely use the two-way replication as long as up-
dates are done by only the SIP server.

For a simple failover case, the primary server P1

is preferred over the secondary server P2. So all the
REGISTER requests go to P1 and are updated in D1.
The replication happens from D1 to D2, not the other
way. Only in the case of failure of P1, will the update
happen to D2 through P2. But D1 will not be up-
dated by the server in this case. By making sure that
database becomes consistent before the failed server
is brought up, we can avoid the database inconsis-
tency problem mentioned above.

Web scripts are used to manage user profiles and
system configuration. To maintain database consis-
tency, the web scripts should not be allowed to mod-
ify D2 if D1 is up. To facilitate this we modified the
MySQL-Tcl client interface to accept a list of connec-
tion attributes. For example, if D1 and D2 are listed
then the script tries to connect to D1 first, and if that
fails then tries D2 as shown in Fig. 9. For our web
scripts, the short-lived TCP connection to MySQL is
active as long as the CGI script is running. So the
failover at the connection setup is sufficient. In the fu-
ture, for long-lived connection, it should be modified
to provide failover even when the TCP connection
breaks.

3.7 Analysis

The architecture provides high reliability due to re-
dundancy. Assuming the reliability of primary and
backup sets of servers as R, the overall reliability is
(1− (1 −R)2).

Server failure affects the call setup latency (since
the client retries the call request to the secondary
server after a timeout) and the user availability (the
probability that the user is reachable via the server
given that her SIP phone is up). If the primary server
is down for a longer duration, the DNS records can be
updated to change the secondary server into primary.
If the individual server reliability is R (such that 0 ≤

R ≤ 1), client retry timeout is TR, and DNS TTL is
TD, then the average call setup latency increases by
TR(1 − R)P[tM < TD] (assuming no network delay
and R ≈ 1), where P[tM < TD] is the probability
that the time, tM (random variable), to repair the
server is less than the DNS TTL. For example, if the
repair time is exponentially distributed with mean

TM , then P[tM < TD] = 1− e
− TD

TM assuming that the
mean time to failure is much larger than the mean
time to repair. (i.e., (1−R)TM ≈ 0).

User availability is mostly unaffected by the pri-
mary server failure, because most registrations are
REGISTER refreshes. However, if the primary server
fails after the phone registers a new contact for the
first time, but before the registration is propagated
to the secondary server, then the phone contact lo-
cation is unreachable until the next registration re-
fresh. In this case, assuming that the server uptime
is exponentially distributed, and given the memory-
less property, the time-to-failure has the same distri-
bution. Suppose the mean-time-to-failure is TF and
the database replication latency is Td, then the prob-
ability that the server goes down before the replica-
tion is completed (given that it is up at t = 0) is

P[lifetime < Td] = 1 − e
− Td

TF . If this happens, the
user record is unavailable for at most Tr + TR, where
Tr is the registration refresh interval (typically one
hour), and TR is client retry timeout. After this time,
the client refreshes the registration and updates the
secondary server making the user record available.

We use an in-memory cache of user records inside
the SIP server to improve its performance [26, 23].
This causes more latency in updating the user regis-
tration from P1 to P2. If the failure happens before
the update is propagated to the P2, then it may have
an old and expired record. However, in practice the
phones refresh registrations much before the expiry
and the problem is not visible. For example, sup-
pose the record expires every two hours and the re-
fresh happens every 50 minutes. Suppose P1 receives
the registration update from a phone and fails before
propagating the update to D1. At this point, the
record in D2 has 70 minutes to expire so P2 can still
handle the calls to this phone. The next refresh hap-
pens in 50 minutes, before expiration of the record in
D2. If a new phone is setup (first time registration)
just before failure of P1, it will be unavailable until
the next refresh. Suppose Td and TF are defined as
before, and Tc is the database refresh interval, then
the probability that the server goes down before the

replication is completed is 1− e
−Td+Tc

TF .

With the Cisco phone [24] that has the primary

5

and backup proxy address options (Section 3.1), the
phone registers with both P1 and P2. Both D1 and
D2 propagate the same contact location change to
each other. However, since the contact record is keyed
on the user identifier and contact location, the sec-
ond write just overrides the first write without any
other side effect. Alternatively, the server can be
modified to perform the immediate synchronization
between the in-memory cache and external database
if the server is not loaded.

The two-way replication can be extended to more
servers by using circular replication such as D1-
D2-D3-D1 using the MySQL master/slave configu-
ration [28]. To provide failover of individual servers
(e.g., D1 fails but not P1), the SIP server P1 should
switch to D2 if D1 is not available.

4 Scalability: Load Sharing

In failover, the backup server takes over in the case
of failure whereas in load sharing all the redundant
servers are active and distribute the load among
them. Some of the failover techniques can also be
extended to load sharing.

4.1 DNS-based load sharing

The DNS SRV [14] and NAPTR [15] mechanisms can
be used for load sharing using the priority and weight
fields in these resource records [3], as shown below:

example.com

_sip._udp 0 40 a.example.com

0 40 b.example.com

0 20 c.example.com

1 0 backup.somewhere.com

The above DNS SRV entry indicates that the servers
a, b, c should be used if possible (priority 0), with
backup.somewhere.com as the backup server (prior-
ity 1) for failover. Within the three primary servers,
a and b are to receive a combined total of 80% of the
requests, while c, presumably a slower server, should
get the remaining 20%. Clients can use weighted ran-
domization to achieve this distribution.

However, simple random distribution of requests
is not sufficient since the servers need to access the
same registration information. Thus, in the example
above, each server would have to replicate incoming
REGISTER requests to all other servers or update the
common shared and replicated database(s). In either
case, the updates triggered by REGISTER quickly be-
come the bottleneck. The SIP phones typically do
REGISTER refresh once an hour, thus, for a wireless

write

D=2

D1

P1

P2

P3

D2

Figure 10: DNS-
based

P1

a−h

i−q

D=3

r−z
P3

P2

stateless
proxy

D3

P0

D1

D2

Figure 11: Identifier-based
load sharing

operator with one million subscribers, it has to pro-
cess about 280 updates per second.

Fig. 10 shows an example with three redundant
servers and two redundant databases. For every REG-
ISTER, it performs one read and one write in the
database. For every INVITE-based call request, it
performs one read from the database. Every write
should be propagated to all the D databases, whereas
a read can be done from any available database. Sup-
pose there are N writes and r ∗ N reads, e.g., if the
same number of INVITE and REGISTER are processed
then r = 2. Suppose, the database write takes T units
of time, and database read takes t ∗ T units. Total
time per database will be (tr

D + 1)TN .
This architecture also provides high reliability due

to redundancy. Assuming that the mean-time-to-
repair is much less than mean-time-to-failure, and
the reliability of individual proxy server as Rp and
database server as Rd, and suppose there are P proxy
servers and D database servers, the reliability of the
system becomes (1− (1−Rp)P)(1− (1−Rd)D). The
reliability increases with increasing D and P .

4.2 Identifier-based load sharing

For identifier-based load sharing (Fig. 11), the user
space is divided into multiple non-overlapping groups.
A hash function maps the destination user identifier
to the particular group that handles the user record,
e.g., based on the first letter of the user identifier.
For example, P1 handles a-h, P2 handles i-q and P3

handles r-z. A high speed first stage server (P0),
proxies the call request to P1, P2 and P3 based on
the destination user identifier. If a call is received
for destination bob@home.com it goes to P1, whereas
sam@home.com goes to P3. Each server has its own
database and does not need to interact with the oth-
ers. To guarantee almost uniform distribution of call
requests to different servers, a better hashing algo-
rithm such as SHA1 can be used or the groups can
be re-assigned dynamically based on the load.

Suppose N , D, T , t and r are as defined in the

6

previous section. Since each read and write opera-
tion is limited to one database and assuming uniform
distribution of requests to the different servers, total
time per database will be (tr+1

D)TN . With increas-
ing D, this scales better than the previous method.
Since the writes do not have to be propagated to all
the databases and the database can be co-located on
the same host with the proxy, it reduces the internal
network traffic.

However, because of lack of redundancy this archi-
tecture does not improve system reliability. Assum-
ing that the mean-time-to-repair is much less than
mean-time-to-failure, and the reliability of the first
stage proxy, second stage proxy and database server
as R0, Rp and Rd, and suppose there are D groups,
then the system reliability becomes R0 ·(Rp)D ·(Rd)D.
The least reliable component affects the system reli-
ability the most and the reliability decreases as D
increases.

The only bottleneck may be the first stage proxy.
We observed that the stateful performance is roughly
similar to stateless performance (Section 5), hence a
single stateless load balancing proxy may not work
well in practice.

4.3 Network address translation

A network address translator (NAT) device can ex-
pose a unique public address as the server address and
distribute the incoming traffic to one of the several
internal private hosts running the SIP servers [30].
Eventually, the NAT itself becomes the bottleneck
making the architecture inefficient. Moreover, the
transaction-stateful nature of SIP servers require that
subsequent re-transmissions should be handled by the
same internal server. So the NAT needs to maintain
the transaction state for the duration of the transac-
tion, further limiting scalability.

4.4 Multiple servers with the same IP
address

In this approach, all the redundant servers in the
same broadcast network (e.g., Ethernet) use the same
IP address. The router on the subnet is configured to
forward the incoming packets to one of these servers’
MAC address. The router can use various algorithms
such as “round robin” or “response time from server”
to choose the least loaded server.

To avoid storing SIP transaction states in the sub-
net router, this method is only recommended for
stateless SIP proxies that use only UDP transport
and treat each request as independent without main-
taining any transaction state.

In the absence of DNS SRV and NAPTR, we can
use this method for the first stage in Fig. 12. This
is less efficient since the network bandwidth of this
subnet may limit the number of servers in the cluster.
Moreover, this method does not work if the network
itself is unreachable.

4.5 Two-stage reliable and scalable ar-
chitecture

s3.example.com

s2.example.com

s1.example.com

a1.example.com, a2.example.com
a*@example.com

b*@example.com

b.example.com

 SRV 1 0 b2.example.co
_sip._udp SRV 0 0 b1.example.co

sip:bob@example.com

b1.example.com, b2.example.com

sip:bob@b.example.com

_sip._udp SRV 0 0 s1.example.com
 SRV 0 0 s2.example.com
 SRV 0 0 s3.example.com

a.example.com
_sip._udp SRV 0 0 a1.example.co
 SRV 1 0 a2.example.co

Figure 12: Two-stage reliable and scalable architec-
ture

Since none of the mechanisms above are sufficiently
general or infinitely scalable, we propose to combine
the two methods (Fig. 10 and 11) in a two-stage scal-
ing architecture (Fig. 12) to improve both reliability
and scalability. The first set of proxy servers selected
via DNS NAPTR and SRV performs request routing
to the particular second-stage cluster based on the
hash of the destination user identifier. The cluster
member is again determined via DNS. The second-
stage server performs the actual request processing.
Adding an additional stage does not affect the audio
delay, since the media path (usually directly between
the SIP phones) is independent of the signaling path.
Use of DNS does not require the servers to be co-
located, thus allowing geographic diversity.

Suppose there are S first stage proxy servers,
P clusters in the second stage, and B proxy and
database servers in each cluster. The second stage
cluster has one primary server and B − 1 backups.
All the databases in a cluster are replicated using
circular replication. Suppose the REGISTER message
arrivals are uniformly distributed (because of the uni-
form registration refresh rate by most user agents)
with mean λR and INVITE (or other requests that
need to be proxied such as MESSAGE) arrivals are
Poisson distributed with mean λP , such that the to-
tal request rate is λ=λR+λP . Suppose the constant
service rates of first stage server be µs, and the sec-
ond stage server be µr and µp for registration and
proxying, respectively. We assume a hash function

7

so that each cluster’s arrival rate is approximately
λ
B . Suppose the reliability (probability that the sys-
tem is available for processing an incoming message)
and maintainability (repair rate of the system after
a failure) distributions for first stage proxy are rep-
resented by probability distribution functions (pdf)
Rs and Ms, respectively, and that for second stage
proxy be Rp and Mp respectively. Note that Fig. 9 is
a special case where S=0, P=1 and B=2. Similarly,
Fig. 11 is a special case where S=B=1.

The goal is to quantitatively derive the relation-
ship between different service parameters (µ), system
load (λ), reliability parameters (R, M) and redun-
dancy parameters (S, B, P). We want to answer
the questions such as (1) when is first stage proxy
needed, and (2) what are the optimal values for re-
dundancy parameters to achieve a given scalability
and reliability. Our goal is to achieve carrier grade
reliability (99.999% available) and scalability (10 mil-
lion BHCA) using commodity hardware. We provide
our performance measurement results for scalability
parameters (S and P) and system load (λ) in the
next section.

Suppose each server is 99% reliable, and S = P =
B = 3, then overall system reliability is (1 − (1 −
Rs)S)·(1−(1−Rp)B)P = 99.9996%, i.e., “five nines”.

We do not consider the case of load sharing by
different proxies in the same cluster, because load
sharing is better achieved by creating more clusters.
For handling sudden load spikes within one cluster,
the DotSlash on-demand rescue system [31] is more
appropriate where a backup server in the same or
another cluster temporarily shares the load with the
primary server of the overloaded cluster.

5 Performance Evaluation

In this section, we quantitatively evaluate the per-
formance of our two-stage architecture for scalability
using our SIP registration and proxy server, sipd, and
SIPstone test suite [32].

5.1 Test setup

We performed the SIPstone Proxy 200 tests, over
UDP. The SIPstone test suite has loaders and call
handlers, to generate SIP requests and to respond
to incoming requests, respectively. The server under
test (SUT) is a two-stage cluster of our SIP servers,
sipd, implementing the reactive system model [23].
An example test setup is shown in Fig. 13. Each
instance of sipd was run on a dedicated host with
Pentium 4, 3GHz CPU, on a 800MHz motherboard,

with 1 GB of memory, running Redhat Linux (Fe-
dora). The hosts communicated over a lightly loaded
100base-T Ethernet connection. A single external
MySQL database, running version 3.23.52 of the
MySQL server was shared by all the sipd instances.
But this is not an issue because the Proxy 200 test
does not modify the database, but uses in-memory
cache of sipd [26].

L=4
Call handlersLoaders

H4

H3

L2

L3

H2

H1

L4

L1

H=4

λ

0.4λ

L

n
Load= λ

0.3

Second stage servers
m=3

λ

First stage servers
n=3

0.3

A1000−A1024

user identifiers

A1025−A1049

A1050−A1074

A1075−A1099

Generate load λ

Load= λ

P3

P2

P1

S2

S1

S3

SIPstone controller

Figure 13: Example test setup for S3P3

To focus on only the scalability aspects we used
one server in each group of the second stage (Fig. 12,
B=1). We use the convention SnPm to represent n
first stage servers, and m second stage groups with
one server per group. S0P1 is same as a single SIP
proxy server without any first stage load balancer.

180 Ringing

200 OK
200 OK

INVITE

Call handlerLoad generator

H2L1

second stage (stateless)first stage (stateless)

200 OK200 OK
200 OK

BYE
BYE

ACK

BYE

ACKACK

200 OK

180 Ringing

INVITE INVITE

180 Ringing

S1 S2 P1 P2

Figure 14: Example message flow

On startup, a number of call handlers (in our
tests, four) register a number of destination locations
(from non-overlapping user identifier sets as shown in
Fig. 13) with the proxy server. Then for the Proxy
200 test, a number of loaders (in our tests, four) send
SIP INVITE requests using Poisson distribution for
call generation to the SUT, randomly selecting from
among the registered addresses as shown in Fig. 14.
If there is more than one first stage server (n > 1),
then the loader randomly selects one of the first stage
servers. The first stage server proxies the request on

8

one of the second stage servers based on the desti-
nation user identifier. The second stage server for-
wards each request to the appropriate call handler
responsible for this user identifier. The call handler
immediately responds with 180 Ringing and 200 OK
messages. These are forwarded back to the load gen-
erators in the reverse path. Upon receiving the 200
OK response, the load generator sends an ACK mes-
sage for the initial transaction and a BYE request for
a new transaction. The BYE is similarly forwarded
to the call handler via the two-stage servers to reflect
the record-route behavior in real operational condi-
tions [32]. The call handler again responds with 200
OK. If the 200 OK response is not received by the
loader within two seconds, or if any other behavior oc-
curs, then the test is considered a failure. The loader
generates the request for one minute for a given re-
quest rate. The server is then restarted, and the test
is repeated for a higher request rate. We used an
increment of 100 calls per second (CPS).

This process is repeated until 50% or more of the
tests fail. Although [32] requires 95% success, we
measure until 50% to show that the throughput is
stable at higher loads. There is no retransmission on
failure [32]. The complete process is repeated for dif-
ferent values of n and m in the cluster configuration,
SnPm.

5.2 Analysis

Fig. 15 compares the performance of the differ-
ent SnPm configurations. It shows the average of
three experiments for each configuration at various
call rates. A single sipd server handles about 900
calls/second (CPS) (see S0P1 in Fig. 15), which cor-
responds to about three million BHCA. When the
load is more than the server capacity, the throughput
remains almost constant at about 900 CPS. When
throughput is same as load, i.e., 100% success rate,
the graph is a straight line. Once the throughput
reaches the capacity (900 CPS), the graph for S0P1

flattens indicating lower success rate for higher load.
At a load of 1800 CPS, the system gives only 50%
success rate (i.e., throughput is half of load), and the
experiment stops. Note that for all practical pur-
poses, success rate of close to 100% is desired.

When the server is overloaded, the CPU utiliza-
tion is close to 100%. Introducing an extra server in
the second stage and having a first stage load bal-
ancing proxy puts the bottleneck on the first stage
server which has a capacity of about 1050 CPS (S1P2

in Fig. 15). An additional server in the first stage
(S2P2) gives the throughput of approximately dou-

ble the single second stage server capacity. Similarly,
S3P3 has capacity of approximately 2800 CPS which
is about three times the capacity of the single sec-
ond stage server, and S2P3 has capacity of 2100 CPS
which is double the capacity of the single first-stage
server.

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

T
hr

ou
gh

pu
t -

 c
al

ls
/s

ec
on

d
Load - calls/second

s0p1s1p1

s1p2

s2p2

s2p3

s3p3

Figure 15: Server throughput in SnPm configuration (n
first stage and m second stage servers). The results show
that the performance increases linearly with the number
of servers, i.e., s2p2 is twice and s3p3 is thrice that of
s1p1 and s0p1 performance.

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

T
hr

ou
gh

pu
t -

 c
al

ls
/s

ec
on

d

Load - calls/second

s1p2

s2p2

s2p3

s3p3

Figure 16: Theoretical and experimental capacity for
configuration SnPm

The results show that we can achieve linear scaling
by putting more servers in the first and second stages
in our architecture. Below, we present the theoretical
analysis for the two-stage architecture.

Suppose the first and second stage servers in SnPm

have capacity of Cs and Cp, respectively (usually,
Cs ≥ Cp). The servers are denoted as Si and Pj ,
1 ≤ i ≤ n, 1 ≤ j ≤ m, for the first and second stage,
respectively. Suppose the incoming calls arrive at an

9

average rate λ, with exponential inter-arrival time.
Suppose the load is uniformly distributed among all
the n first stage servers, so the each first stage server
gets a request rate of λ

n . Suppose the hash function
distributes the requests to the second stage server
such that the ith server, Pi, gets a fraction, fi, of
the calls (Note that

∑
fi = 1). Assuming that all

the users are equally likely to get called, and the
hash function uniformly distributes the user identi-
fiers among the second stage servers, then all fi will
be same (i.e., fi = 1

n). However, differences in the
number of incoming calls for different users will cause
non-uniform distribution in reality.

The throughput, τ , at a given load, λ, is the com-
bined throughput of the two stages. The throughput
of the first stage is λ′ = min(λ, nCs), which is load
(input) to the second stage. The server, Pj , in the
second stage has throughput of min(λ′fj, Cp). Thus,

τ(λ) =
m∑

j=1

min(fj min(λ, nCs), Cp)

Without loss of generality, we assume that fi ≥ fj

for i > j. The resulting throughput vs load graph
is given by m + 1 line segments, Li: (λi, τi) →
(λi+1, τi+1), for i=0 to m, where (λk, τk) is given
as follows:

(0, 0) for k = 0

(
Cp

fk
, τk−1 + (λk − λk−1)Fk) for 1 ≤ k ≤ m; fk ≥ Cp

nCs

(nCs, τk−1 + (λk − λk−1)Fk) for 1 ≤ k ≤ m; fk <
Cp

nCs

(∞, τm) for k = m + 1
where Fk = (1−∑m

i=k
fi)

The initial line segment represents 100% success
rate with slope 1. At the request load of Cp

f1
, server

P1 reaches its capacity and drops any additional re-
quest load. So the capacity increases at rate equal to
the remaining fraction of requests that go to the other
non-overloaded servers, Pk, k = 2, 3, ..., m. This gives
the slope F1 = (1 − (f2 + f3 + ... + fm)) for the sec-
ond line segment. Similarly, P2 reaches its capacity
at load Cp

f2
, and so on. When all the second stage

servers are overloaded the throughput remains con-
stant, giving the last line segment. At the request
load of nCs, all the first stage servers, Si, reach their
capacity limit. If the second stage server Pj ’s capac-
ity, Cp is more than the load it receives at that time,
fj(nCs), then the system throughput is not limited
by Pj .

We used a set of hundred user identifiers for test.
The hash function we used distributed these identi-
fiers as follows: for m = 2, f is roughly {0.6, 0.4}, and
for m = 3, f is roughly {0.4, 0.3, 0.3}. Note that with

1000 or 10 000 user identifiers the same hash function
distributed the set more uniformly as expected, but
our skewed distribution of hundred identifiers helps
us verify the results assuming non-uniform call dis-
tribution for different users. The capacity Cs and Cp

are 900 CPS and 1050 CPS, respectively. The re-
sulting theoretical performance is shown in Fig. 16
for s1p2, s2p2, s2p3 and s3p3 with system capacity
of 1050, 1740, 2100 and 2700 CPS, respectively. Al-
though S2P2’s second stage can handle 900 × 2 =
1800 CPS, the throughput of the first stage is only
1050× 2 = 2100, out of which 60% (i.e., 1260 CPS)
goes to P1 which drops 1260 − 900 = 360 CPS. So
the system throughput is 2100 − 360 = 1740 CPS.
Our experimental results are plotted as data points
(not average, but individual throughput values) in
the same graph for comparison.

5.3 Non-uniform call distribution

If the call requests to the user population among the
different second stage servers is non-uniformly dis-
tributed, then the system starts dropping the call re-
quests at a load lower than the combined capacity of
the second stage servers. To prevent this, the user
data should be redistributed among the second stage
servers to provide an uniform distribution on an av-
erage, e.g., by changing the hash function. Fig. 17
compares the two experiments for the S2P2 configu-
ration: one with the earlier skewed hash function that
distributed the user identifiers in ratio 60:40 and an-
other hash function (Bernstein’s hash [33]), that dis-
tributed the user identifiers in ratio 50:50.

If the number of second-stage groups changes fre-
quently, then a consistent hashing function [34] is
desirable that avoid large redistribution of the user
identifiers among the servers.

5.4 Stateful proxy

So far we have shown the test results using the state-
less proxy mode. A SIP request over UDP that needs
to be proxied to only one destination (i.e., no request
forking), can be proxied statelessly. Our SIP server,
sipd, can be configured to try the stateless mode, if
possible, for every request that needs to be proxied.
If a request can not be proxied statelessly, sipd falls
back to the transaction stateful mode for that re-
quest. Stateful mode requires more processing and
state in the server, e.g., for matching the responses
against the request.

We ran one experiment by disabling the stateless
proxy mode in the second stage. Fig. 18 shows the ex-
perimental results along with the theoretical through-

10

 0

 400

 800

 1200

 1600

 2000

 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

T
hr

ou
gh

pu
t -

 c
al

ls
/s

ec
on

d

Load - calls/second

skewed hash
uniform hash

Figure 17: Effect of user identifier distribution among
second stage servers for S2P2. Uniform distribution gives
the best performance, i.e., success rate is close to 100%
until the peak performance (1800 CPS), whereas for non-
uniform distribution the success rate reduces as soon as
one of the server is overloaded (at 1500 CPS).

 0

 400

 800

 1200

 1600

 2000

 0 400 800 1200 1600 2000 2400 2800

T
hr

ou
gh

pu
t -

 c
al

ls
/s

ec
on

d

Load - calls/second

s0p1
s1p1
s1p2
s2p2
s2p3
s3p3

Figure 18: Performance of SnPm with stateful proxy in
second stage. The results show that the performance in-
creases linearly with the number of servers, i.e., s2p2 is
twice and s3p3 is thrice that of s1p1 and s0p1 perfor-
mance.

put using the earlier hash function. The first and sec-
ond stage server capacities are C=800 and C′=650
CPS, respectively. The first stage server capacity
is less if the second stage is stateful (800 CPS) com-
pared to the case when the second stage is stateless
(1050 CPS), because the stateful second stage server
generates two additional 100 Trying SIP responses for
INVITE and BYE in a call that increases the num-
ber of messages handled by the first stage server (See
Fig. 19 and 14). If a fraction, fs, of the input load
needs to be handled using stateful mode (e.g., due to
request forking to multiple callee devices), then the

effective server capacity becomes (1 − fs)C + fsC
′.

200 OK

ACK
ACKACK

200 OK
200 OK

Call handler

H2
Load generator

L1

first stage (stateless)

100 trying BYE100 trying
BYEBYE

100 trying

INVITE INVITE
100 trying INVITE

180 Ringing
200 OK

180 Ringing
180 Ringing

second stage (stateful)

200 OK200 OK

P2P1S2S1

Figure 19: Stateful proxy message flow

Our more recent optimizations enhance the single
second stage server throughput to 1200 CPS and 1600
CPS for stateful and stateless proxy, respectively.

5.5 Effect of DNS

In our earlier experiments, the call handler registered
the DNS host name with the proxy server so that the
server does DNS lookup for locating the call handler
host. We observed comparatively poor performance,
e.g., a single proxy server capacity with DNS was 110
CPS on the same hardware, compared to 900 CPS
without DNS. There were two problems in our imple-
mentation: (1) it used a blocking DNS resolver that
waits for the query to complete so the internal request
queue builds up if the DNS latency is more than the
average interarrival duration; and (2) it did not im-
plement any host-cache for DNS, so the second stage
server did DNS lookup for every call request. We
also observed some fluctuations in throughput even
before the server reached its capacity. This was due
to the fact that the DNS server was not in the same
network, and the DNS procedure took between 10
to 25ms for each call. In our tests, sipd sent about
29 DNS queries for each call due to multiple resolver
search domains (six in our tests) and DNS records
(e.g., sipd tries NAPTR, SRV and A records, falling
back in that order) used in the implementation.

Then, we implemented a simple DNS host-cache in
sipd and observed same performance as that without
DNS (i.e., 900 CPS for single second stage server). In
practice, the first-stage servers access records for the
second-stage servers within the same domain, thus,
doing localized DNS queries in the domain. It will be
interesting to measure the host-cache performance for
the real callee host names by the second-stage servers,
instead of a few call handler host names that were
cached after the first lookups until the end of the test
run in our tests. We plan to use an event-based DNS

11

resolver to improve the performance and eliminate
the potential bottleneck due to DNS access.

5.6 Other SIPstone tests

We also performed one experiment with Registra-
tion test without authentication. The performance is
shown in Fig. 20 along with the expected throughput
values. We used capacity values as Cs=2500 registra-
tions/second (RPS) and Cp=2400 RPS for first and
second stage servers respectively. Authentication re-
quires two transactions, thus reducing the capacity
to half. Thus, the S3P3 configuration will be able to
support more than 10 million subscribers assuming
one hour registration refresh interval.

 0

 800

 1600

 2400

 3200

 4000

 4800

 5600

 6400

 7200

 0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800

T
hr

ou
gh

pu
t -

 r
eg

is
tr

at
io

ns
/s

ec
on

d

Load - registrations/second

s0p1
s1p1
s1p2
s2p2
s2p3
s3p3

Figure 20: Performance for SnPm with registration
server in second stage. The results show that the per-
formance increases linearly with the number of servers,
i.e., s2p2 is twice and s3p3 is thrice that of s1p1 and s0p1
performance.

Note that the second stage registrar is always state-
ful. Moreover, we used the database refresh rate
to be more than the test duration, thus, removing
the database synchronization variable from the re-
sults. The effect of database synchronization on per-
formance is for further study. The first stage proxy
server capacity for the registration test is more be-
cause the number of messages per transaction that it
handles is two in the registration test compared to
six in the Proxy 200 test (see Fig. 21 and 14).

The Proxy 200 test determines the BHCA (busy
hour call attempts) metric, whereas the registration
test determines the number of registered subscribers
for the system.

L1
Load generator

200 OK 200 OK

first stage (stateless)
REGISTER REGISTER

second stage: registra
S2 P2

Figure 21: REGISTER message flow

6 Server Architecture

There are two components in providing high ca-
pacity IP telephony services: network components
such as bandwidth, server location and load shar-
ing, and server components such as server hardware
(CPU, memory), features vs. performance tradeoff,
non-blocking I/O and software architecture. In gen-
eral, scaling any Internet service involves individual
server performance enhancements and load distribu-
tion among multiple servers. We described and eval-
uated SIP load sharing in Sections 4 and 5. This
section deals with performance enhancements on an
individual SIP server on commodity server hardware.
In particular, we evaluate the effect of software ar-
chitecture - events, threads or processes - for the SIP
proxy server. We try to answer the following ques-
tions: (1) For a SIP-style server, which of the basic
architectures is likely to perform better in a given sit-
uation? (2) Does performance scale with CPU speed
or is it memory dominated? (3) What can be done
to improve the performance on a multiprocessor ma-
chine?

We built a very basic SIP server in different soft-
ware architectures using the same set of libraries for
SIP processing. This helps us in understanding the
effect of the server architecture on performance. The
server includes a parser module and has many simpli-
fications such as memory-only lookups without any
database write-through, no SIP Route header han-
dling, minimal configuration, only UDP transport
(i.e., no TCP or TLS), no programmable scripts, and
no user authentication. We used standard POSIX
threads, which map to kernel-level threads on So-
laris and Linux. On a multi-processor hardware, con-
currency is utilized via multi-threading and multi-
processing software architecture. Our goal is to use
commodity hardware without any custom tweaks,
hence optimized user-level threads and CPU sched-
uler reconfiguration are not investigated.

12

Database
lookup

TCP

UDP

recv

recvfrom

accept

Response

Proxy

First stage proxy

stateless proxy

other

Request other messages

sendmsgdatabase
Update

response

matching
Request

modify

(B)

(B)

(B)

(B)(B)

(B)

(B)

(B)(B)

Stateful

Stateless proxy

matching
Branch

Found
REGISTER

reject

Redirect/

Next server

lookup

response
Build

DNSrequest
modify

Initial
Parsing

Figure 22: Processing steps in a SIP server

6.1 Processing steps

Figure 22 describes the steps involved in processing
a SIP request in any SIP server. It includes both
transaction stateless and stateful processing. The
server receives a message on UDP, TCP, SCTP, or
TLS transport. We use only UDP in our tests. The
message is parsed using our unoptimized SIP parser.
If the message is a SIP request, it is matched against
the existing transactions. If a matching transaction
is found, the request is a retransmission and the last
response, if any, in the transaction is returned for the
request. If a match is not found, and the request
is a SIP REGISTER request, then the user contact
records are updated for this registration and a re-
sponse is sent. For any other request, the user record
is looked up. Depending on the policy chosen, the
call is then proxied, redirected or rejected. In the
proxy mode, the server looks up the callee’s current
contact locations, forwards the request and waits for
the response. During this process, the server may
need to perform additional retransmissions for relia-
bility. When receiving a response, the server looks
up the appropriate matching transaction for this re-
sponse and forwards the response. If the policy de-
cides to redirect the request instead of proxying it, the
server sends the response to the caller listing the new
contact location(s). The first stage load balancing
server selects the next stage server based on the des-
tination user identifier, without doing any database
query. The steps are based on our SIP server im-
plementation, but are likely to be similar for other
implementations.

These processing steps can be implemented in var-
ious software architectures for both stateless and
stateful proxy modes.

6.2 Stateless proxy

A stateless proxy does not maintain any transaction
state, and has a single control flow per message. That
means, once a message is received, it can be processed
to the end without interfering with other messages.
We used only UDP transport for our tests and did not
perform any DNS lookups. As shown in Figure 14,
a single Proxy 200 test involves six messages. In Fig-
ure 22, for an incoming call request, the steps per-
formed are recvfrom, initial parsing, database lookup,
modify request and sendmsg. Similarly, for an incom-
ing call response the steps performed are recvfrom,
initial parsing, modify response and sendmsg. A first
stage load balancer proxy is also a stateless proxy,
but it does not include the database lookup stage.
The processing steps can be implemented in different
software architectures as follows:

Event-based: A single thread listens for incoming
message and processes it to the end. There is no
locking. This does not take advantage of the un-
derlying multiprocessor architecture. If DNS is
used, then the same thread also listens for events
such as the DNS response and timeout.

Thread per message: A main thread listens for in-
coming messages. A new parsing thread is cre-
ated to do the initial parsing. Then another pro-
cessing thread is created to perform the remain-
ing steps depending on whether the message is
a request or a response. The thread terminates
after the steps are completed. DNS lookups, if
any, are performed synchronously in the process-
ing thread. Locks (i.e., mutexes) are used for
accessing shared data such as database. Poten-
tially blocking operations include DNS, sendmsg,

13

and database lookup.

Pool-thread per message: This is similar to the
previous method, except that instead of creating
a new thread, it reuses a thread from a thread
pool. A set of threads are created in the thread
pool on server initialization and persist through-
out the server lifetime. This reduces the thread
creation overhead and is the original architecture
of our SIP server, sipd [23]. To further reduce
lock contention, the user data can be divided
into multiple sets (say, 100), each with its own
transaction tables or user records. Thus, access
to user records in different sets do not contend
for the same lock.

Process pool: On server initialization, a pool of
identical processes is created, all listening on the
same socket. When a message is received, one of
the processes gets the socket message and per-
forms all the processing steps for that message.
Shared memory is used for sharing the database
among multiple processes. This is the architec-
ture of the SIP express router [35].

Thread pool: This is similar to the previous
method, but it uses threads instead of processes.
Only one thread can call recvfrom on the listen-
ing socket. If a thread has called recvfrom, then
another thread is blocked from calling this func-
tion until the first thread finishes the function
call.

Software architecture
/Hardware

1xP 4xP 1xS 2xS

Event-based 1550 400 150 600
Thread per message 1300 500 100 500
Pool-thread per mes-
sage (sipd)

1400 850 110 600

Thread pool 1500 1300 152 750
Process pool 1600 1350 160 1000

Table 1: Performance (CPS) of stateless proxy for
Proxy 200 test

We ran our tests on four different platforms as
follows: (1xP) Pentium 4, 3GHz, 1 GB running
Linux 2.4.20, (4xP) four-processor Pentium 450MHz,
512MB running Linux 2.4.20, (1xS) ultraSparc-IIi,
300MHz, 64MB running Solaris 5.8, and (2xS) two-
processor ultraSparc-III+, 900MHz, 2GB running
Solaris 5.8. The results of our tests are shown in Ta-
ble 1. The numbers presented in this section are dif-
ferent from earlier load sharing experiments of sipd,

because these tests were done after some optimiza-
tions such as per-transaction memory pool to reduce
memory deallocation and copy [23]. The performance
of different architectures relative to the event-based
model on different platforms is shown in Figure 23.

For a single processor system (1xP and 1xS), the
performances of event-based, thread pool and process
pool are roughly similar. We found that the thread
pool model had higher context switches compared to
process pool. In the process pool model the same
process keeps getting scheduled for handling subse-
quent requests. This resulted in the slight difference
in the performance. The process pool model performs
the best. The thread-per-message and pool-thread-
per-message models have many fold higher context
switches resulting in much poorer performance. This
is because every message processing must involve at
least two context switches. One interesting observa-
tion is that both the single processor systems (1xP
and 1xS) took approximately 2MHz CPU cycle per
CPS (calls per second) load.

For a multiprocessor system, the performance of
the process pool implementation scales linearly with
the number of processors. The performance of the
pool-thread-per-message model is much worse than
process pool because the former does not fully uti-
lize the available concurrency of multiprocessor hard-
ware. The processor running the main listening
thread becomes the bottleneck.

Figure 23: Performance of software architectures relative
to event-based on different hardware. For example, the
performance of stateless proxy on 4xP hardware in the
thread pool architecture is approximately three times that
in the event-based architecture on the same hardware.

14

6.3 Stateful proxy

Unlike the stateless proxy, a transaction stateful
proxy needs to maintain the SIP transaction state for
the duration of the transaction. We used only UDP
transport for our tests and did not perform any DNS
lookup. As shown in Figure 19, a single Proxy 200
test involves six incoming and eight outgoing mes-
sages. In Figure 22, compared to the stateless proxy,
the stateful proxy performs additional steps such as
transaction (or client branch) matching. The trans-
actions data structures are locked for exclusive access
in a multi-threaded system. The processing steps can
be implemented in different software architectures as
follows:

Event-based: Most of the blocking operations are
made non-blocking using events. A single thread
handles events from a queue (e.g., timer events)
as well as messages from the listening socket.
There is no locking or mutexes. There are only
two operations that remain blocking: listening
for incoming message on the socket, and listening
for events on the event queue. A single threaded
event-based system does not take advantage of
the underlying multiprocessor architecture.

Thread per message (or transaction): A main
thread listens for incoming messages. If the
message is a request not matching any previous
transaction, then a new thread is created to han-
dle the new transaction associated with this mes-
sage. The thread persists as long as the trans-
action exists. Similarly, a process-per-message
model can be defined that creates a new process
for each incoming connection and message.

Thread pool: This is similar to the previous
method, except that instead of creating a new
thread, it reuses a thread from the thread
pool. This reduces the thread creation overhead.
Locks are used for accessing shared data. Poten-
tially blocking operations include DNS lookup,
sendmsg, request matching and database access.
This is the original architecture of our SIP server,
sipd [23].

(Two-stage) thread pool: A pool of identical
threads is created. Each thread handles a spe-
cific subset of the user population based on the
hash value of the user identifier, similar to the
second stage of our load sharing architecture.
A request is processed in two stages. The first
stage thread listens for incoming messages, does
minimum parsing, and chooses the second stage

thread based on the destination user identifier.
The message is then handed over to the partic-
ular second stage thread. The second stage is
purely event-based with no other locking. Since
a single thread handles the requests for the
same set of users, we do not need to lock the
database or transaction data structures. Num-
ber of threads in the thread pool is determined
by the number of processors.

The models can be further extended to processes
as follows. We have not evaluated these extensions
yet:

Process pool: A pool of identical processes is cre-
ated, each listening on the same socket. When a
message is received, the server performs all the
processing steps for that message. Shared mem-
ory is used for sharing the transaction and user
contacts among multiple processes. This is the
architecture of the SIP express router [35].

Two-stage event and process-based: This is
similar to the two-stage thread pool model,
but using processes instead of threads. The
inter-process communication is done using pipes
or shared memory. Multiple first stage processes
can be used to allow more concurrency.

A generic design of thread-per-message is easy to
understand and implement. However this model suf-
fers from poor performance at higher load [36]. As the
load increases the number of threads in the system
also increases. If the thread blocks waiting for a net-
work response, the maximum number of simultaneous
requests active in the system is small. Transaction
lifetime further reduces the system capacity. For ex-
ample, if the OS supports 10000 threads, and the SIP
transaction lifetime is about 30 seconds, then there
can be at most 10000/30 = 333 transactions/second
processed in the system. Unlike a web server, this is
further exacerbated in a SIP server by the fact that
about 70% of calls are answered within roughly 8.5
seconds [37] while unanswered calls ring for 38 sec-
onds. Thus, a bad design results in insufficient num-
ber of threads. This leads to higher call blocking or
call setup delays at high call volume. Thus, we need
to use a true event-driven architecture which requires
the threads to be returned to the free-threads pool
whenever they make a blocking call.

Table 2 and Figure 23 compare the performance
of stateful proxy in different architectures on the
same set of hardware, except that 1xS is replaced by
a single-processor ultraSparc-IIi, 360MHz, 256MB,
running Solaris5.9. Event-based system performs

15

best for single processor machine. For an N -processor
machine, the thread pool performance is much worse
than N times the single-processor performance due
to memory access contentions.

Software architecture
/Hardware

1xP 4xP 1xS 2xS

Event-based 1150 300 160 400
Thread per message 600 175 90 300
Thread pool (sipd) 850 340 120 300
2-stage thread pool 1100 550 155 500

Table 2: Performance (CPS) for stateful proxy for
Proxy 200 test

6.4 The best architecture

The two-stage thread pool model for stateful proxy
and the thread pool model for stateless proxy com-
bine the event and thread pool architectures. They
provide an event-loop in each thread, and has a pool
of threads for concurrency on multiprocessor ma-
chines. The lock contention is reduced by allowing
the same thread to process all the steps of a mes-
sage or transaction after initial parsing. For a multi-
threaded software architecture this seems to give the
best performance as per our tests. We have not yet
evaluated the stateful proxy in process pool model.

The stateless proxy performance is usually limited
by the CPU speed, whereas the memory utilization
remains constant. On the other hand, the stateful
proxy may be limited by either CPU or memory de-
pending of various transaction timers. By default a
SIP transaction state is maintained for about 30 sec-
onds. Thus, a load of 1000 CPS creating 2000 trans-
actions per second will require memory for about 60
thousand transactions. Assuming 10 kB for storing
each transaction state, this requires 600MB. In our
tests, we have reduced the timer values significantly
so that memory is not the bottleneck.

6.5 Effect on Load Sharing Perfor-
mance

The software architecture choice of the SIP server
further enhances the load sharing results since the
best single stateless proxy capacity is about 1600 CPS
on a 3 GHz Pentium 4 with 1 GB memory running
Linux 2.4.20. In addition, we have achieved about
4000 CPS throughput for the first stage proxy in a
simplified implementation. This means even S1P2 in
stateless proxy mode can achieve close to 3200 CPS,
i.e., 11 million BHCA on this hardware configuration.

Similarly, S3P3 in stateful proxy mode can achieve
close to 13 million BHCA.

7 Conclusions

We have shown how to apply some of the existing
failover and load sharing techniques to SIP servers,
and propose an identifier-based two-stage load shar-
ing method. Using DNS is the preferred way to of-
fer redundancy since it does not require network co-
location of the servers. For example, one can place
SIP servers on different networks. With IP address
takeover and NATs, that is rather difficult. This is
less important for enterprise environments, but in-
teresting for voice service providers such as Vonage.
DNS itself is replicated, so a single name server out-
age does not affect operation. We combine DNS,
server redundancy and the identifier-based load shar-
ing in our two-stage reliable and scalable server archi-
tecture that can theoretically scale to any capacity.
A large user population is divided among indepen-
dent second stage servers such that each server load
remains below its capacity.

We have also described the failover implementa-
tion and performance evaluation of our two-stage
architecture for scalability using the SIPstone test
suite in our test bed. Our results verify the the-
oretical improvement of load sharing for call han-
dling and registration capacity. We achieve carrier
grade scalability using commodity hardware, e.g.,
2800 calls/second supported by our S3P3 load sharing
configuration roughly translates to 10 million call ar-
rivals per hour, using six servers (Lucent’s 5E-XCTM

switch, a high-end 5ESS, can support four million
BHCA for PSTN). This is further increased to 16
million BHCA in our memory pool and event-based
architecture. We also achieved the 5-nines reliabil-
ity goal even if each server has only uptime of 99%
(3 days/year downtime) using the two-stage architec-
ture. Other call stateful services such as voicemail,
conferencing and PSTN interworking need more work
to do failover and load sharing in the middle of the
call without breaking the session.

Detection and recovery of wide area path out-
ages [38] is complementary to the individual server
failover. Instead of statically configuring the re-
dundant servers, it will be useful if the servers can
automatically discover and configure other available
servers on the Internet, e.g., to handle temporary
overload [31]. This gives rise to the service model
where the provider can sell its SIP services dynami-
cally by becoming part of another customer SIP net-
work. Dynamic or adaptive load sharing based on

16

the workload of each server is for further study. How-
ever, it is not clear how useful this will be for Internet
telephony because the call distribution is more uni-
form unlike Zipf distribution of web page popularity.
Therefore, a good static hash function can uniformly
distribute the call requests among the servers. A
peer-to-peer approach for the SIP service also seems
promising for scalability and robustness [39].

Acknowledgment

Huitao Sheng helped with the initial performance
measurement. Jonathan Lennox is the primary archi-
tect of our SIP server, sipd, and helped with SIPstone
tools. Sankaran Narayanan implemented the efficient
database interaction in sipd. The work is supported
by a grant from SIPquest, Inc.

References
[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston,

J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP:
session initiation protocol,” RFC 3261, Internet Engineering
Task Force, June 2002.

[2] H. Schulzrinne and J. Rosenberg, “Internet telephony: Ar-
chitecture and protocols – an IETF perspective,” Computer
Networks and ISDN Systems, vol. 31, pp. 237–255, Feb. 1999.

[3] J. Rosenberg and H. Schulzrinne, “Session initiation protocol
(SIP): locating SIP servers,” RFC 3263, Internet Engineering
Task Force, June 2002.

[4] H. BRYHNI, E. Klovning, and Øivind Kure, “A comparison
of load balancing techniques for scalable web servers,” IEEE
Network, vol. 14, July 2000.

[5] K. Suryanarayanan and K. J. Christensen, “Performance eval-
uation of new methods of automatic redirection for load bal-
ancing of apache servers distributed in the Internet,” in IEEE
Conference on Local Computer Networks, (Tampa, Florida,
USA), Nov. 2000.

[6] O. Damani, P. Chung, Y. Huang, C. Kintala, and Y. Wang,
“ONE-IP: techniques for hosting a service on a cluster of ma-
chines,” Computer Networks, vol. 29, pp. 1019–1027, Sept.
1997.

[7] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why do
internet services fail, and what can be done about it?,” in 4th
USENIX Symposium on Internet Technologies and Systems
(USITS ’03), (Seattle, WA), Mar. 2003.

[8] A. C. Snoeren, D. Andersen, and H. Balakrishnan, “Fine-
grained failover using connection migration,” in USENIX
Symposium on Internet Technologies and Systems, (San
Francisco), Mar. 2001.

[9] High-Availability Linux Project, http://www.linux-ha.org/.

[10] Cisco Systems, Failover configuration for LocalDirec-
tor, http://www.cisco.com/warp/public/cc/pd/cxsr/
400/tech/locdf wp.htm.

[11] G. Hunt, G. Goldszmidt, R. P. King, and R. Mukherjee, “Net-
work dispatcher: a connection router for scalable Internet ser-
vices,” Computer Networks, vol. 30, pp. 347–357, Apr. 1998.

[12] C.-L. Yang and M.-Y. Luo, “Efficient support for content-
based routing in web server clusters,” in 2nd USENIX Sym-
posium on Internet Technologies and Systems, (Boulder,
Colorado, USA), Oct 1999.

[13] Akamai Technologies, Inc. http://www.akamai.com.

[14] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for
specifying the location of services (DNS SRV),” RFC 2782,
Internet Engineering Task Force, Feb. 2000.

[15] M. Mealling and R. W. Daniel, “The naming authority
pointer (NAPTR) DNS resource record,” RFC 2915, Inter-
net Engineering Task Force, Sept. 2000.

[16] N. Ohlmeier, “Design and implementation of a high availabil-
ity sip server architecture,” Thesis, Computer Science De-
partment, Technical University of Berlin, Berlin, Germany,
July 2003.

[17] M. Tuexen, Q. Xie, R. Stewart, M. Shore, J. Loughney, and
A. Silverton, “Architecture for reliable server pooling,” In-
ternet Draft draft-ietf-rserpool-arch-09, Internet Engineering
Task Force, Feb 2005. work in progress.

[18] M. Tuexen, Q. Xie, R. J. Stewart, M. Shore, L. Ong, J. Lough-
ney, and M. Stillman, “Requirements for reliable server pool-
ing,” RFC 3237, Internet Engineering Task Force, Jan. 2002.

[19] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, and M. Tüxen,
“Reliable ip telephony applications with sip using RSerPool,”
in World Multiconference on Systemics, Cybernetics and
Informatics (SCI), (Orlando, USA), July 2002.

[20] A. Srinivasan, K. G. Ramakrishnan, K. Kumaran, M. Arava-
mudan, and S. Naqvi, “Optimal design of signaling networks
for Internet telephony,” in Proceedings of the Conference on
Computer Communications (IEEE Infocom), (Tel Aviv, Is-
rael), Mar. 2000.

[21] R. Sparks, “The session initiation protocol (SIP) refer
method,” RFC 3515, Internet Engineering Task Force, Apr.
2003.

[22] J. Janak, “SIP proxy server effectiveness,” Master’s Thesis,
Department of Computer Science, Czech Technical Univer-
sity, Prague, Czech, May 2003.

[23] J. Lennox, “Services for internet telephony,” PhD.
thesis, Department of Computer Science, Columbia
University, New York, New York, Jan. 2004.
http://www.cs.columbia.edu/~lennox/thesis.pdf.

[24] Cisco IP phone 7960, Release 2.1, http://www.cisco.com.

[25] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS perfor-
mance and the effectiveness of caching,” in ACM SIGCOMM
Internet Measurement Workshop, (San Francisco, Califor-
nia), Nov. 2001.

[26] K. Singh, W. Jiang, J. Lennox, S. Narayanan, and
H. Schulzrinne, “CINEMA: columbia internet extensible mul-
timedia architecture,” technical report CUCS-011-02, Depart-
ment of Computer Science, Columbia University, New York,
New York, May 2002.

[27] W. Jiang, J. Lennox, S. Narayanan, H. Schulzrinne, K. Singh,
and X. Wu, “Integrating Internet telephony services,” IEEE
Internet Computing, vol. 6, pp. 64–72, May 2002.

[28] MySQL, Open Source SQL server, http://www.mysql.com.

[29] K. Singh and H. Schulzrinne, “Failover and load sharing in
SIP telephony,” Tech. Rep. CUCS-011-04, Columbia Univer-
sity, Computer Science Department, New York, NY, USA,
Mar. 2004.

[30] P. Srisuresh and D. Gan, “Load sharing using IP network ad-
dress translation (LSNAT),” RFC 2391, Internet Engineering
Task Force, Aug. 1998.

17

[31] W. Zhao and H. Schulzrinne, “Dotslash: A self-configuring
and scalable rescue system for handling web hotspots effec-
tively,” in International Workshop on Web Caching and
Content Distribution (WCW), (Beijing, China), Oct. 2004.

[32] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle,
“SIPstone - benchmarking SIP server performance,” Techni-
cal Report CUCS-005-02, Department of Computer Science,
Columbia University, New York, New York, Mar. 2002.

[33] B. Jenkins, “Algorithm alley,” Dr. Dobb’s Journal, Sept.
1997. http://burtleburtle.net/bob/hash/doobs.html.

[34] D. R. Karger, A. H. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B.-J. J. Kim, and L. Matkins,
“Web caching with consistent hashing,” Computer Networks,
vol. 31, pp. 1203–1213, May 1999.

[35] “SIP express router (ser): a high performance free sip server.”
http://www.iptel.org/ser.

[36] M. Welsh, D. Culler, and E. Brewer, “SEDA: an architecture
for well-conditioned, scalable Internet services,” in Sympo-
sium on Operating Systems Principles (SOSP), (Chateau
Lake Louise, Canada), ACM, Oct. 2001.

[37] F. P. Duffy and R. A. Mercer, “A study of network perfor-
mance and customer behavior during-direct-distance-dialing
call attempts in the USA,” Bell System Technical Journal,
vol. 57, no. 1, pp. 1–33, 1978.

[38] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Mor-
ris, “Resilient overlay networks,” in 18th ACM SOSP, (Banff,
Canada), Oct. 2001.

[39] K. Singh and H. Schulzrinne, “Peer-to-peer Internet tele-
phony using SIP,” Tech. Rep. CUCS-044-04, Department of
Computer Science, Columbia University, New York, NY, Oct.
2004.

18

