
H. Schulzrinne, R. State, and S. Niccolini (Eds.): IPTComm 2008, LNCS 5310, pp. 107–132, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Secure SIP: A Scalable Prevention Mechanism for DoS
Attacks on SIP Based VoIP Systems

Gaston Ormazabal1, Sarvesh Nagpal2, Eilon Yardeni2, and Henning Schulzrinne2

1 Verizon Laboratories
gaston.s.ormazabal@verizon.com

2 Department of Computer Science, Columbia University
{sn2259,ey2125,hgs}@cs.columbia.edu

Abstract. Traditional perimeter security solutions cannot cope with the com-
plexity of VoIP protocols at carrier-class performance. We implemented a
large-scale, rule-based SIP-aware application-layer-firewall capable of detect-
ing and mitigating SIP-based Denial-of-Service (DoS) attacks at the signaling
and media levels. The detection algorithms, implemented in a highly distributed
hardware solution leveraged to obtain filtering rates in the order of hundreds of
transactions per second, suggest carrier class performance. Firewall performs
SIP traffic filtering against spoofing attacks; and request, response and out-of-
state floods. The functionality and performance of the DoS prevention schemes
were validated using a distributed test-bed and a custom-built, automated test-
ing and analysis tool that generated high-volume signaling and media traffic,
and performed fine grained measurements of filtering rates and load-induced
delays of the system under test. The test-tool included SIP-based attack vectors
of spoofed traffic, as-well-as floods of requests, responses and out-of-state mes-
sage sequences. This paper also presents experimental results.

Keywords: SIP, DoS, DDoS, VoIP, Security, Signaling Attacks, Application
Layer Firewall, Deep Packet Inspection, Distributed Computing, Scalability.

1 Introduction

Denial-of-Service (DoS) attacks are explicit attempts to disable a target thereby pre-
venting legitimate users from making use of its services. DoS attacks continue to be
the main threat facing network operators. As telephony services move to Internet
Protocol (IP) networks and Voice over IP (VoIP) becomes more prevalent across the
world, the Session Initiation Protocol (SIP) [1] infrastructure components, which form
the core of VoIP deployments, will become targets in order to disrupt communica-
tions, gain free services, or simply to make a statement. Since DoS attacks are at-
tempts to disable the functionality of the target, as opposed to gaining operational
control, they are much more difficult to defend against than traditional invasive ex-
ploits, and are practically impossible to eliminate. We designed and demonstrated
effective defenses against SIP-specific DoS attacks, with the capability to operate at
carrier-class rates. We addressed all four aspects that an effective solution against
DoS attacks should cover namely, definition, detection, mitigation, and validation.

108 G. Ormazabal et al.

Definition characterizes DoS attacks on the SIP infrastructure, examining the threat
taxonomy to identify specific areas that require research focus. Detection distinguishes
the attack traffic from valid traffic, whereas mitigation reduces the impact of DoS
attacks on the target infrastructure. Detection and mitigation schemes work in tandem
and aim to maintain adequate bandwidth and resources for legitimate traffic, throttle
the malicious packets and streams, and perform continued analysis to enhance the
detection and mitigation capabilities. Validation of the defense scheme for correct
operation, involves modeling the system behavior, building a testing setup capable of
generating VoIP DoS attacks, quantifying their impact on protected and unprotected
VoIP infrastructure, and measuring the effectiveness of the defense strategies.

This paper examines the SIP threat model and DoS taxonomy in Section 2. An
overview of related work is presented in Section 3. This is followed by SIP-specific
DoS solutions and filter design in Section 4. The system architecture and implementa-
tion aspects are addressed in Section 5. The benchmarking methodology and the se-
cureSIP toolkit with the experimental results are covered in Section 6. Conclusions
are presented in Section 7.

2 Problem Definition: The SIP Threat Model

This section examines the SIP threat model as the basis for formulating requirements
for our detection and mitigation strategies. Since SIP is used on the public Internet,
the threat model assumes an environment in which attackers can potentially read any
packet on the network. Furthermore, the fact that SIP runs over UDP, provides oppor-
tunities for attacks like spoofing1, hijacking, and message tampering. Attackers on the
network may also be able to modify packets, perhaps at some compromised interme-
diary node. We note that the security of SIP signaling, however, is independent from
protocols used to secure transmission of media. For example, SRTP (RFC 3711) [2]
may be used for end-to-end encryption of the RTP encapsulated audio stream. This
section is based on the VoIP Security Alliance (VOIPSA) threat taxonomy report [3]
together with definitions in RFC 3261– SIP [1].

There are three basic types of DoS attacks that may occur over a VoIP network,
namely, exploitation of implementation flaws, exploitation of application level syn-
tactic vulnerabilities, and flooding of the SIP signaling channel or the RTP media
channels. These attacks may target a VoIP component, such as a SIP proxy, or sup-
porting servers, such as a DNS, or a DHCP server. A DoS attack against a supporting
server affects the VoIP service in different ways. Attacks against a domain’s DNS
server result in denial of VoIP calls destined to users in that domain. Attacks against
an authorization service, used by a SIP proxy to store address-of-record (AOR) to
User Agent (UA) mappings, can result in denial of service to the UAs registering with
this proxy. This document, however, focuses exclusively on attacks against SIP-based
components. The following sub-sections describes the three basic types of attacks in
the SIP-specific context.

1 Usually referred to as IP spoofing, where an attacker fakes or falsifies the source IP address in

a SIP message header.

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 109

DoS Due to Implementation Flaws
Attack occurs when a specific flaw in the implementation of a VoIP component is
exploited by a carefully crafted packet sent to cause unexpected behavior. The at-
tacked software component, in this case, has typically not been implemented robustly
enough to handle these unexpected packets, and also suffers from inadequate software
assurance testing or negligent patching. The malformed packet interacts with installed
software and may cause excessive memory or disk consumption, extra CPU process-
ing, a system reboot or system crash. The targeted vulnerability may originate in dif-
ferent levels of the network protocol stack, such as the TCP layer or the SIP layer, or
in the underlying operating system or firmware [5] and [6]. Examples of implementa-
tion flaws attacks include:

Malformed signaling: Unusually long or syntactically incorrect SIP message packets,
referred to as “malformed”, are sent to the UA degrading its performance, resulting in
its inability to process normal setup and teardown messages for calls.

Invalid call setup messages: A number of invalid call set up messages, such as a SIP
ACK request when none is expected, are sent to cause the endpoint to crash, reboot, or
exhaust all of its resources.

DoS Due to Exploitation of Application-level Vulnerabilities
Attack occurs when a feature of the VoIP protocol syntax is manipulated to cause a
DoS attack. Examples of application level attacks against SIP-based components
include:

Registration hijacking: The SIP registration mechanism allows a UA to identify itself
to a registrar as a device whose location is designated by an AOR. Attackers register
their devices with other users’ AORs, thereby directing all requests for the affected
user to the attacker’s device.

Call hijacking: Once a dialog has been established, subsequent requests are sent to
modify the state of the dialog or session. For example, the attacker injects a 302 Moved
Temporarily message in an active session, thereby hijacking the media session.

Media sessions modification: The attacker spoofs re-INVITE messages, thereby modi-
fying security attributes of a session, reducing Quality of Service (QoS), or redirect-
ing media streams to another device for wiretapping.

Session teardown: The attacker spoofs a BYE message and injects it into an active
session, thereby tearing down the session.

Amplification attacks: The attacker creates bogus requests containing a falsified
source IP address, and a corresponding Via header field identifying a targeted host, as
the originator of the request. Subsequently, the attacker sends this request to a large
number of SIP network elements, thereby causing hapless SIP UAs or proxy servers
to generate a DoS attack aimed at the target host, typically a server. Similarly, DoS
can also be carried out on an individual by using falsified Route header field values in
a request that identifies the target host, and then sending these messages to forking
proxies that will amplify messages sent back to the target. Record-Route is used to
similar effect when the attacker is certain that the SIP dialog initiated by a request will

110 G. Ormazabal et al.

result in numerous transactions originating in the backwards direction. An attacker
can also register a large number of contacts designating the same host for a given
AOR, in order to use the registrar and any associated proxy servers as amplifiers in a
DoS attack. Attackers may also attempt to deplete a registrar’s available memory and
disk resources, by registering large numbers of bindings. Multicast may be also used
to transmit SIP requests, greatly increasing the potential for DoS attacks.

Note that if the volume of an application-level DoS attack is sufficient to cause re-
source depletion, or excessive performance degradation, the attack is reclassified as a
flooding DoS attack.

DoS Due to Flooding
Attack occurs when a large number of packets are sent to a target IP component;
hence any Internet based service is vulnerable to DoS attacks. DoS attacks on services
that run on IP represent the broader perspective. The attacker floods the network link
by generating more packets than the recipient can handle, or overwhelms the target
making it too busy processing packets from the attack and hence unable to process
legitimate packets. Flood attacks for IP components include UDP SYN floods, ICMP
echo packets, where the attacker generates a large number of packets directed to the
targeted sources. When this attack is done using multiple distributed sources, such as
botnets2, the result is a Distributed DoS (DDoS) [4]. Both the DoS and the DDoS
problem for generic IP systems have received a great deal of attention over the years
and several commercial products already exist that address this threat. The focus of
this work, however, is on DoS, and its corresponding DDoS variety, specifically tar-
geted to VoIP and VoIP-based components, for which currently no protection exists.
Flooding DoS attacks to VoIP-based server components can be broadly classified into
two categories:

Signaling floods: The most prominent of this category of attacks involves sending a
large number of SIP INVITE or REGISTER messages originating from one or multiple
SIP UAs to cause excessive processing at a SIP proxy server - thus delaying or drop-
ping legitimate session establishment messages. There is a computational expense
associated with processing a SIP transaction at a proxy server. This expense is greater
for stateful than for stateless proxy servers as stateful servers maintain client and
server transaction state machines, while stateless do not. Stateful servers are therefore
more susceptible to flooding than the stateless type. Floods of messages directed at
SIP proxy servers may lock up proxy server resources and prevent desirable traffic
from reaching its destination.

Media floods: A range of ports known to be open for legitimate RTP streams are
randomly flooded with meaningless and/or un-sequenced packets, over-claiming
bandwidth and hindering the RTP QoS.

2 Botnet describes a collection of software robots, or bots, running autonomously on groups of

zombie computers controlled remotely. It also refers to a network of computers using distributed
computing software.

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 111

3 Related Work

There has been previous effort to protect VoIP deployments from DoS threats. An
early evaluation of firewalls for VoIP security was proposed in [7], but it lacked con-
crete architectural and implementation aspects. A mitigation strategy for flooding
DoS attacks on media components using a dynamic pinhole filtering device that
blocks all traffic not associated with a legitimate call was previously developed as
part of an earlier phase of this research. We designed and built a scalable SIP-aware
application layer firewall based on the principle of dynamic pinhole filtering for the
RTP streams [8] and [9]. This was the first attempt to combine the SIP proxy with a
commercial hardware based, fast packet processing application server, to achieve
carrier-class performance and full SIP conformance.

Wu, Y. et al. [10] and Niccolini, S. et al. [11] have applied intrusion detection and
prevention mechanisms to safeguard the SIP infrastructure, while the work described
in [12] makes use of finite state machines to achieve similar goals. An interesting
approach involving VoIP “honeypots” was proposed in [13]. Extensive work on de-
tecting DoS attacks on IP telephony environments has been published in [14], [15],
[16], [17] and [18]. Although promising, none of the architectures and algorithms
proposed so far offer a comprehensive DoS mitigation strategy that scales up to the
performance needs and complexity of carrier-class VoIP deployments, because they
are based on software solutions. We are not aware of any specific performance meas-
urements for any of these software based systems. Our solution leverages the Cloud-
Shield Technologies CS-2000 distributed hardware platform [18] that combines the
processing speed of a distributed network processor platform with the full functional-
ity of a SIP proxy.

4 SIP-specific DoS Solutions and Filter Design

We propose a novel approach that builds on our earlier SIP-aware firewall design,
introducing two phases of VoIP traffic filtering, a dynamic pinhole filter (Filter I) for
the media traffic, followed by SIP-specific filters (Filter II) for the signaling traffic.
Figure 1 gives a high-level view of a SIP security system consisting of these two
levels of filtering. Filter I provides the first line of defense by allowing only the sig-
naled media to traverse the firewall, preventing any DoS attacks on the media proc-
essing end points. Additionally, it provides standard static filtering for traditional
attacks, described as “other attack traffic” in Figure 1, by only allowing traffic on the
standard SIP (5060) port. The SIP signaling channel, however, can itself contain SIP-
based DoS and hence the motivation forOP Filter II. Filter II, which is comprised of a
series of SIP-based filters provide the second line of defense by protecting the SIP
signaling port (and thereby the SIP-proxy) from DoS attacks.

This paper covers design, realization, and analysis of SIP-specific filters including
a return routability filter, rate-limiting filter and state-validation filter. Together, these
filters can protect the SIP infrastructure against known and currently achievable

112 G. Ormazabal et al.

Fig. 1. Two-phase filtering (SIP and media)

spoofing attacks, flood-of-requests and flood-of-response attacks, and “out-of-state”
signaling attacks. We built a scalable security system prototype based on the CS-2000
fast packet processing application server, combined with the Columbia SIP Proxy
sipd, developed as part of the Columbia InterNet Multimedia Architecture (CINEMA)
[19], enabling an effective realization of the proposed SIP security architecture for
carrier-class VoIP deployments.

The filters are realized in the deep-packet processing module (DPPM) of the SIP-
aware firewall system deployed at a VoIP network perimeter. The DPPM includes
very high speed silicon databases that use content addressable memory (CAM) tech-
nology for table look-up and keeping state. Additionally, the DPPM is equipped with
a regular expression engine used for pattern matching logic in state validation. Some
of the filters require the use of a firewall control protocol (FCP) to update state tables
in the DPPM, while others result from packet logic manipulation directly on the
DPPM, and directly updated on the CAM tables. The filters include a return routabil-
ity check, and a series of filters based on SIP method manipulation mechanisms that
can be used to cause flooding.

Return Routability Filter
The return routability filter is designed to detect and block spoofed incoming requests
by using the SIP Digest Authentication3 mechanism. The SIP protocol specifies that
upon receiving a request, other than CANCEL and ACK, a proxy can challenge the re-
quest initiator to provide assurance of its identity. The challenge is sent in a Proxy-
Authorization header field of a 407 Proxy Authentication Required response, including a

3 Digest Authentication provides message authentication and replay protection only, without

message integrity or confidentiality.

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 113

freshly computed nonce4 value. The initiator then retries the request with the proper
credentials, along with a pre-shared secret5, in a Proxy-Authorization header field.

The proxy responds with the digest authentication challenge whenever it gets a
new request, simultaneously instructing the firewall to create a filter rule using the
FCP. This firewall filter will then block all further unauthenticated requests from the
same IP address from getting to the proxy. If the request originator responds with the
correct challenge response, the proxy removes the filter rule from the firewall. The
filter is temporary, with a short expiration time on the order of seconds. This process
can be viewed as layer-7-controlled-layer-3- filtering. An example call flow diagram of
the return routability filter operation is shown in Figure 2. The corresponding detailed
call flows are in Appendix A.

INVITE (src addr=IP1) F2

407 challenge, “opaque” F3

Create filter (IP1,”opaque”) F4

INVITE (src addr=IP1) F1

INVITE (src addr=IP1) F6
Challenge-response, “opaque”

407 challenge, ”opaque” F5

INVITE (src addr=IP1) F7
Challenge-response, “opaque”

Remove filter (IP1,”opaque”) F8

INVITE F9

SIP

FCP

DPPM Proxy (sipd)

INVITE (src addr=IP1) F2

407 challenge, “opaque” F3

Create filter (IP1,”opaque”) F4

INVITE (src addr=IP1) F1

INVITE (src addr=IP1) F6
Challenge-response, “opaque”

407 challenge, ”opaque” F5

INVITE (src addr=IP1) F7
Challenge-response, “opaque”

Remove filter (IP1,”opaque”) F8

INVITE F9

SIP

FCP

DPPM Proxy (sipd)

Fig. 2. The call flow for digest authentication

In the call flow described in Figure 2, the DPPM intercepted the first INVITE request
(F1) with IP1 as the source IP address. The DPPM did not find a match in the filter table
and hence forwarded the request to the proxy (F2). The proxy received the INVITE re-
quest and responded with a 407 message containing the challenge (F3), and also by
sending an FCP message (F4) to create a temporary filter rule blocking further requests
from IP1. The filter rule was based on the nonce that was part of the authentication
challenge, and was expected to be included in the authentication response unchanged.
This FCP message was processed by the DPPM and the filter was created. When the

4 A nonce is a uniquely generated string used for one challenge only, computed using IP ad-

dress, timestamp, username, password and realm, and has a lifetime of 60 seconds.
5 SIP allows the use of “null authentication”, where a proxy can authenticate an “anonymous”

username with no password. The return routability filter was designed based on null authenti-
cation, which is a necessary and sufficient condition to establish return routability to the re-
quest initiator, avoiding the extra overhead inducing password management process.

114 G. Ormazabal et al.

new SIP request arrived, the DPPM intercepted it (F6) and tried to match the source IP
address with the IP address in the filter table. If there was no match then the request was
blocked. Otherwise, if the nonce values were equal, the request was forwarded to the
proxy (F7) and the proxy successfully authenticated the INVITE request and sent an FCP
message (F8) to remove the filter from DPPM. By configuring the proxy not to keep
any state until the return routability was verified by the firewall, the possibility of proxy
overloading with potentially spoofed request floods could be eliminated.

SIP Method-based Filters
Method-based filters were designed to mitigate attacks that exploit protocol vulner-
abilities to cause flood DoS. The design focused on rate-limiting SIP requests and
response floods, and also using state validation mechanisms to achieve this.

SIP is a request/response protocol. A request and its associated responses constitute
a SIP transaction, which follows the same signaling path through a set of SIP servers.
A SIP call, as presented in Figure 3, can be broken down to four levels of granularity.
A call is composed of one or more dialogs, while a dialog contains one or more trans-
actions. A transaction can be a client transaction or a server transaction; and each of
the client/server transactions can be divided into INVITE and non-INVITE types.

INVITE

180 Ringing

BYE

Caller CALLEE

ACK

Individual Messages

Transaction 2

INVITE

CALLEE

ACK

Transaction 1

INVITE

200 OK

Caller CALLEE

ACK

Individual Messages

Transaction 2

INVITE

CALLEE

ACK

Transaction 1

200 OK

Dialog

INVITE

180 Ringing

BYE

Caller CALLEE

ACK

Individual Messages

Transaction 2

INVITE

CALLEE

ACK

Transaction 1

INVITE

200 OK

Caller CALLEE

ACK

Individual Messages

Transaction 2

INVITE

CALLEE

ACK

Transaction 1

200 OK

Dialog

Fig. 3. Levels of granularity in a SIP session

A SIP dialog is identified by a combination of the Call-ID6, From tag and To tag. A SIP
transaction is identified by the branch7 parameter of the Via header and the Method name
in the CSeq field. These fields can be used to construct respective dialog ID and transac-
tion ID identifiers. Both of these identifiers are used to maintain the corresponding state

6 Call-ID is a globally unique identifier for a call, generated by the combination of a random

string and the phone's host name or IP address.
7 The branch parameter of the Via header is a unique value across space and time that is created

by a UA for a particular and specific request.

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 115

information. Rate-limiting can be applied either at the dialog level or at the transac-
tion level; however, for every SIP method except for BYE and CANCEL, the dialog level
does not provide sufficiently precise parameters to perform meaningful thresholding.
For example, it may be hard to distinguish a legitimate INVITE from a spurious one(s)
if they have different transaction IDs. Hence, for every other method, transaction level
is the most effective way to narrow down to more specific parameter thresholds for
filtering.

Dialog based attacks include CANCEL and BYE attacks, that can only happen at the
dialog level, as both are dialog terminating requests. In a CANCEL attack, a spurious
CANCEL request is sent before the final response of a dialog/transaction, thereby termi-
nating the dialog prematurely, hence causing DoS. BYE attacks involve sniffing8 session
parameters (such as Call-ID), and generating illegitimate BYE requests to terminate an
on-going session without knowledge of any of the involved end-clients. To keep track
of BYE messages, record-routing has to be enabled at the proxy. Alternatively, the firewall
at the perimeter may be used to identify unsolicited BYE messages. In addition to BYE
message filtering based on dialog ID, a table of all participating URIs must be main-
tained to verify whether contact header field of the BYE message corresponds to one of the
participating URIs. The REFER attack, similar to a man-in-the-middle attack, involves an
eavesdropper manipulating the Referred-By header to cause DoS. REFER attacks can be
mitigated by deploying S/MIME to detect possible manipulation of the Referred-By header
data, but are not covered in our current filter design.

A@domain1.com B@domain2.com

INVITE
INVITE

INVITE

180 RINGING

200 OK

100 TRYING
100 TRYING

180 RINGING
180 RINGING

200 OK
200 OK

200 OK

ACK

BYE
MEDIA SESSION

proxy.domain1.com server.domain2.com

A@domain1.com B@domain2.com

INVITE
INVITE

INVITE

180 RINGING

200 OK

100 TRYING
100 TRYING

180 RINGING
180 RINGING

200 OK
200 OK

200 OK

ACK

BYE
MEDIA SESSION

proxy.domain1.com server.domain2.com

B@domain2.com

INVITE
INVITE

INVITE

180 RINGING

200 OK

100 TRYING
100 TRYING

180 RINGING
180 RINGING

200 OK
200 OK

200 OK

ACK

BYE
MEDIA SESSION

proxy.domain1.com server.domain2.com

Fig. 4. SIP trapezoid

Transaction-based attacks on a proxy include floods of INVITE requests containing
same transaction ID, thus causing processing overload. Furthermore, a re-INVITE attack
can change on-going session parameters by issuing or resending INVITE or UPDATE

8 Sniffing the Call-ID in a SIP message is easy to accomplish given the clear-text nature of the

protocol in its basic form, i.e. non-encrypted.

116 G. Ormazabal et al.

requests with different parameters. Transaction-based rate-limiting filters detect and
mitigate floods of INVITE requests with the same transaction ID, and all of their associ-
ated responses, to stop them at the perimeter.

The SIP trapezoid, as specified in RFC 3261 and shown in Figure 4, is introduced
to describe the method-based rate-limiting filters in more detail. The transactions
depicted in the trapezoid are shown in Figure 5 in their client/server relationships. In
reference to the interaction between the User Agent Client (UAC) and an outbound
proxy, the request is an INVITE, and the associated responses are comprised of 100
Trying, 180 Ringing and 200 OK. From the proxy's perspective, this is an INVITE server
transaction, with the 200 OK ending the transaction and taking the proxy to Terminate
state. Accordingly, the messages at proxy are rate-limited to one INVITE per transaction
(incoming); a finite number of 100 Trying per transaction (outgoing); a finite number of
180 Ringing per transaction (outgoing); and one 200 OK per transaction (outgoing).

The finite number of allowed 100 Trying and 180 Ringing messages is flexible and
should be decided by different network parameters depending on the complexity of
the routed network. To allow for retransmissions, the threshold for INVITE and 200 OK
messages may also be raised from one message to a higher finite number that can be
experimentally determined from the network configuration under test. Arbitrary mes-
sages that do not conform to the above sequence may leave the proxy in an unwanted
state. A similar rate-limiting analysis can be applied to the transactions between the
outbound proxy and inbound proxy, and User Agent Server (UAS) and inbound
proxy. The number of INVITEs from a particular UAC is also limited to a single call at
a time, or to some particular value based on the size of n-way conferences allowed.
For example, if an INVITE message is from a particular UAC’s IP address already in
the CAM table, with its state label being intermediate (in-progress), then the new IN-
VITE will be rejected. In order to avoid state exhaustion at the proxy, no state will be
kept during any of these steps.

Fig. 5. SIP client-server interaction through inbound and outbound proxy

State Validation Filters
Extending the analysis in the previous section to the transactions between the UAC
and outbound proxy, it is not only the rate but also the order of arrival of messages that
may leave the proxy in an unexpected state. The schematics in Figures 6 and 7 describe
the state machines for INVITE client and server transactions, respectively. A detailed
description of INVITE and non-INVITE client/server transactions can be found in [1].

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 117

Fig. 6. INVITE client transaction

Fig. 7. INVITE server transaction

Using the SIP state machine protocol, it is possible to define the set of expected
messages and hence discard the sequences considered out-of-state. The firewall filter
will have state tables that point to the current state of a transaction from {Proceeding,

118 G. Ormazabal et al.

Completed, Confirmed, Terminated}, and a set of rules governing the transitions. The table
structure has the format {Transaction ID, Timestamp, State, Acceptable message codes, Next
state}. This table is applicable for both rate-limiting as well as state-validation types of
method-based filters.

We have also implemented similar table-driven rate-limiting rules to filter non-
standard 1xx (except 100 and 180), non-standard 2xx (except 200), and 300-699 responses
to a finite number per second, depending on network parameters. This will eliminate
specific handling for each of the messages in the range. The non-standard messages
are logged in a table having the structure {Transaction ID, Timestamp, Non-standard
message code}.

Rate-limiting is also performed on INVITE requests coming from a single source IP
and identical From URI, in case of outbound proxy, and INVITE requests coming to a
single destination IP, and To URI, in case of inbound proxy. The timestamp differences
between a new INVITE and an identical INVITE in the above table should be within one
second, or else the request is rejected. This is defined in the firewall filter table as
{Source/Destination IP, Timestamp, From/To URI}.

Lastly, filtering at the dialog level helps the identification of spurious BYE mes-
sages by using the dialog ID of a message, and rejecting BYE messages that are not
part of an existing Dialog. This filtering requires a simple table structure {Dialog ID,
Timestamp}.

5 System Architecture and Implementation

We deployed an architecture in which the SIP proxy (sipd) uses the wire-speed packet
processing and CAM capabilities of the CS-2000 server DPPM to boost overall
packet-processing capacity. In this section, we describe the architecture and the im-
plementation components as integral modules of the underlying framework.

Inbound Outbound

SIP

Switch

FCP/UDP

Drop

Lookup

Linux serverASM
sipd

InboundInbound OutboundOutbound

SIPSIP

Switch

FCP/UDP

Drop

Lookup

Linux serverASM
sipd

Fig. 8. Architecture components of CloudShield CS-2000

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 119

Components required for implementing the architecture shown in Figure 8 include
a SIP proxy, data plane execution in the DPPM, and firewall control. The SIP proxy
supports “null authentication” and a new FCP message9 to create/remove a filter from
the DPPM using {IP, nonce}. The CS-2000 data plane execution modules run filters as
applications on DPPM. Filters intercept network traffic and monitor, process, and
drop packets using static filtering of pre-defined ports (e.g., SIP, ssh, port 6252), dy-
namic filtering of legitimately opened ports (e.g., RTP) and a switch layer function
performing switching between the input ports. The data plane also includes a return
routability filter table, with table entries containing {IP address, string (nonce), state-
label, timeout value}. Additionally, the data plane features a counter that maintains a
count of requests/second for comparison with a pre-determined threshold to detect
request floods. When the threshold is crossed, the DPPM starts applying the rate-
limiting policy. The DPPM tries to match SIP requests with filters in the state table by
matching on dialog ID and transaction ID.

The SIP proxy server runs within the CS-2000 application server module (ASM).
The proxy server interacts with the DPPM using the Firewall Control Protocol (FCP)
for the return routability filter. The Firewall Control Module, in the SIP proxy, talks
with the DPPM, intercepts SIP call setup messages, gets nonce from the 407 Proxy
Authentication Required header, gets RTP ports from the SDP payload and maintains call
state, pushes filter for SIP UA (nonce) being challenged, and pushes dynamic table
updates to the data plane. FCP can be used by multiple SIP proxies that control one or
more CloudShield firewalls. FCP supports the new return routability create/remove
filter messages, using the same FCP message format described in [8], with the addi-
tion of a random string option to accommodate the nonce.

SIP messages are related using message lookup tables, leveraging the DPPM built-
in CAM databases for very low latency lookups. Aged lookup tables are implemented
to track call, dialog and transaction relationships using the {dialog ID table, transac-
tion ID table} tuple. Messages are identified by type (request or response) and code
(request method or response status code). The “error status message” rate limiter
performs error message limiting within the context of a valid transaction. The error
rate limiters are implemented as high-speed counters in SRAM, with granularity of
one second.

Return Routability Filter
The rate at which the SIP proxy can handle incoming SIP requests is mainly bounded
by CPU power. When digest authentication was enabled, this rate decreased, as for
every incoming SIP request the proxy had to both process a new challenge and vali-
date the provided authorization data. This process has been thoroughly analyzed in
[20] and experimentally verified in our test-bed, as detailed in Section 6 below. An
attack flood of spoofed INVITE messages can then overload the proxy as the authenti-
cation of each spoofed request is attempted. The CS-2000 detected the SIP request
floods, and a rate-limiting policy was applied in order to reduce the load from the
proxy. The type of rate-limiting policy has a direct impact on the number of false-
negatives (“bad” requests that were not blocked) and/or false-positives (“good”
requests that were filtered). In the rate-limiting policy suggested in this work, the

9 A detailed description of the FCP protocol can be found in reference [8].

120 G. Ormazabal et al.

firewall established a temporary filter, based on IP address and nonce, whenever a
new request needs to be authenticated. The filter was used to block any further
unauthenticated request attempts coming from the same source, from getting to the
proxy. When the proxy got the request, it responded with the digest authentication
challenge, and simultaneously issued an FCP message to create the filter in the
DPPM. If the request originator successfully responded with the correct challenge
response, the proxy removed the filter from the firewall. The filter was also tempo-
rary in the sense that it expired after some short period of time on the order of sec-
onds. The filter can be based on the From URI or the source IP address.

The detailed design of return routability filters involved the interception of incom-
ing INVITE requests at DPPM, and extraction of source IP addresses from the requests.
If no corresponding entry for the source IP address was found in the filter’s CAM
table, the incoming request was forwarded to the proxy. This rule ensured that the
first packet from a UA always reached the proxy regardless of filters deployed. After
receiving the INVITE request, the proxy responded back to the UA with a 407 Proxy
Authentication Required challenge, and also simultaneously sent an FCP message, con-
taining source IP and nonce value, to the DPPM to create a filter table entry. All sub-
sequent INVITE requests coming from the same UA were intercepted by DPPM, as
before, but at this stage, a corresponding filter entry for this source IP was found to
already exist. At that point, if the incoming request contained the same nonce value as
previously stored in CAM table filter entry, the request was forwarded to the proxy,
and CAM tables were updated to allow all incoming packets from this source IP
(white-list), for a short interval of time. In the event of no match, however, the request
was dropped right at the perimeter. White-lists are dynamic and the lifetime of each
entry was automatically extended with every packet containing the correct nonce. In
our experiments, we used thirty seconds for the white-list auto expiry default.

Rate-limiting Filters
Rate-limiting filters required the extraction of the dialog ID (DLGID) and transaction
ID (TXNID) from every received SIP request, and their storage in different and sub-
ordinate CAM tables. Since dialog ID and transaction ID are variable length fields, a
CRC-32 bit hash algorithm was applied in order to generate a fixed length index in
the CAM tables, to enable state keeping. DLGID was the 32 bit integer calculated by
Hash {From IP, To IP, Call ID} and for every DLGID entry in CAM database, there was
a subordinate table for associated TXNIDs. TXNID was the 32 bit integer calculated
by Hash {Top Via: BranchID, CSeq Command Value}. If a TXNID was not found to be
duplicated, normal call processing execution continued. If TXNID was found to be
duplicated, then the packet was dropped before it reached the proxy. Ideally only one
SIP request message should have been allowed per TXNID, however, because of
network conditions, the same request may need to be retransmitted multiple times. To
allow for this, a window of finite retransmissions before packet drop was imple-
mented and the system trained to find the optimum window length for a given net-
work configuration. The purpose of this window was for optimization to prevent
“false positives”. A CAM table entry was maintained for each authenticated INVITE,
and state was incremented for each client so that a filter was put up to accept mes-
sages corresponding to only the next allowed state, or any termination message. A
timeout filter was also used to terminate a session after a predetermined interval.

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 121

Upon receiving a new subsequent status message, if the status message record is valid
then the request was accepted, if bogus, the packet was dropped. Additionally, the rate
of requests per transaction per second was also checked not to exceed a selected finite
number (6), after which packet was dropped. The rate at which messages are received
in any state from the session/UA, were limited to a predefined rate, and handled
within the state a session/UA is in. Arbitrary error messages at high rates were also
blocked if the rate crosses a pre-determined threshold.

SIP Transaction State Validation
This filter validated the state of each SIP transaction for each message received and
complemented the other filtering mechanisms. The use of the CS-2000 regular ex-
pressions engine allowed validation of every arriving message as “in-state” or “out-
of-state” in one CPU cycle, resulting in high scalability and performance. Messages
that resulted in invalid states were dropped and the transaction state was always main-
tained in a legitimate state. The DPPM made an entry for the first transaction request,
and logged all subsequent status messages in a buffer, on a per transaction basis. Each
received packet was added to the status messages table for the original transaction. If
the received status message fit a valid state pattern, it was accepted while if it was an
invalid pattern, the message was dropped.

transaction
ID

Transaction Message Code Log

INVI _100 _180 _180 _200

Request
Message

Response
Message

Response
Message

Response
Message

Response
Message

Regular
Expression

Engine
Regular Expression List

INVI(_100)*?(_180)*?_200{0,1}?(\x00){4}

transaction
ID

Transaction Message Code Log

INVI _100 _180 _180 _200

Request
Message
Request
Message

Response
Message
Response
Message

Response
Message
Response
Message

Response
Message
Response
Message

Response
Message
Response
Message

Regular
Expression

Engine
Regular Expression List

INVI(_100)*?(_180)*?_200{0,1}?(\x00){4}

Fig. 9. Regular expressions for request-response transaction

The implementation of the rate-limiting filters, in more detail, involved extraction
of the dialog ID and transaction ID from an incoming packet, and comparison with
the dialog ID table and subordinate transaction ID table stored in the CAM databases.
If a corresponding entry already existed, the message type was entered in a transac-
tion message code log, as shown in Figure 9. The string formed by the sequence of
messages {INVI_100_180_180_200}, in the example in Figure 9, was matched with the
rules list {INVI(_100)*?(_180)*?_200{0,1}?(\x00){4}} that codify the SIP state machine pre-
stored regular expression rules. The use of wild cards in regular expression syntax
afforded validation of all permutations of allowed states in a single operation. If a
match was found, the new arriving message was inferred to adhere to the state validation

122 G. Ormazabal et al.

rules, and allowed to go through to the proxy; otherwise it was discarded, and also re-
moved from the transaction message log, e.g., in the sequence {INVITE, 100, 180, 200, 180,
200}; the filters will only allow the sequence {INVITE, 100, 180, 200}, while the last {180,
200} messages are removed, as the second 180 was already out of state.

6 Benchmarking Methodology

The primary aim of the benchmarking methodology was the verification of correct filter
functionality in effectively preventing DoS attacks, and their performance and scalabil-
ity at carrier-class traffic rates. The security system was verified for its functional accu-
racy, by developing a novel benchmarking toolkit that provided an extensible and auto-
mated interface for testing and analysis based on distributed computing. The test tool
generated high-volume SIP sessions, including SIP-based attack vectors of spoofed
traffic, as well as floods of SIP requests, SIP responses and out-of-state message se-
quences. The analysis module presents the data in easy-to-read table form results.

Prior to determining the filters effectiveness, the baseline capacity of the proxy
server, for our specific hardware configuration, had to be first established by launch-
ing signaling traffic to find the maximum server call handling rate, for a given set of
concurrent calls. As described in [21], the call rate handling capacity is directly re-
lated to the processing power of the computer hosting the proxy server, and the num-
ber of concurrent calls is dependent on the machine’s available memory. We evalu-
ated performance of the system with 100,000 concurrent calls of legitimate traffic, as
a reference number for comparing performance under different experimental call rates
configurations10.

For our experiments, two proxy setup configurations were used: one without digest
authentication, and one with digest authentication enabled. Digest authentication is
necessary to distinguish spoofed requests from normal traffic; hence it was also required
by the filters design. Our measurements of the difference in baseline capacity of these
two setups are in accordance with expected results, and validate the previously reported
numbers by Salsano, S., et al. [20]. Since the filters, as designed, rely on digest authenti-
cation, we used the maximum performance from this setup as the baseline reference for
comparisons against measurements carried out with filters turned on. We begin by de-
scribing our test-bed architecture, hardware configuration, attack generation tools and
mechanisms, followed by an analysis of the experimental results.

Test-bed Architecture
The generation, measurements and analysis of the SIP DoS attacks were performed in a
controlled VoIP test-bed, consisting of hardware and software components used to gen-
erate high-volume loads. The test-bed was comprised of an array of seventeen Sun Fire
X2100 servers, equipped with an AMD Opteron 2-GHz processor and 2GB of RAM,
running Ubuntu Server OS. The test-bed also included the proxy server sipd, resident on
the application server module (ASM) of the CloudShield firewall, which consisted of a
dual Pentium-III 1-GHz based CPU with 1GB of RAM, running Linux 2.6.17-10.

10 The number 100,000 was arrived at from performing various experiments to be sufficient to

obtain a statistically significant sample.

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 123

Fig. 10. Test-bed architecture

The setup was equipped with the SIPstone [22] and SIPp [23] suites of SIP traffic
generation and benchmarking tools, configured in “loader” and “handler” modes11.
SIPp is a robust, easily configurable open-source tool, with customizable XML-based
scenarios for traffic generation and handling. SIPp uses multiple threads to generate
higher call rates per loader-handler pair, as compared to other user agents. In the Sun
Fire X2100 server cluster configuration used in these experiments, each loader/
handler pair can generate a maximum of 300 calls per second (CPS). SIPstone is a
Columbia-developed signaling test-suite with enhancements for null-digest authenti-
cation, and generation of spoofed requests, both capabilities required for these ex-
periments. Each Sun fire X2100 server equipped with SIPstone can generate 1200
spoofed requests/sec in standalone mode.

The seventeen machines in the setup were loaded with both of these test tools to
enable a dynamic configuration, and were connected to the CloudShield firewall us-
ing GigE switches as shown in Figure 10. One of these machines was configured to
host the test-bed controller running secureSIP, a web-based control software described
in the next section, and the remaining sixteen machines were dynamically configured
as traffic generators in loader/handler mode or in individual attack generator mode
(e.g., spoofers). Within this distributed setup, network traffic was also captured in
real-time using wireshark12 and analyzed [24].

Controller - secureSIP
The measurements and validation procedures are controlled by secureSIP, a web-
based control software using distributed computing processes that provides the tester
a user interface to launch, terminate, manage, measure, analyze and store the out-
comes of the benchmarking tests as shown in Figure 11.

11 Loaders are used to generate calls, behaving as callers, while handlers receive these calls,

thus behaving as callees.
12 A network protocol analyzer that allows packet capture from live networks, as well as read-

ing packets from saved “capture” files.

124 G. Ormazabal et al.

Fig. 11. Architecture of secureSIP controller

Each of the remaining sixteen machines was loaded with secureSIP clients, which
communicated with the secureSIP controller on a predefined channel over UDP (port
6252), to perform the required actions. The secureSIP clients used a combination of
SIPp, SIPstone and SIPUA (used only for registration [19]). Clients support digest
authentication, and were capable of generating spoofed messages, floods of re-
quests/responses, and out-of-state messages to verify performance of return routabil-
ity, rate-limiting and state validation filters respectively. Each client updated traffic
statistics in real time to a central relational database server using MySQL [25]. The
data consolidation at one central server facilitated easy correlation, real-time perform-
ance analysis, exporting results to spreadsheets and drawing charts to visualize pat-
terns from historical data.

Performance Bench-marking
The first step was the establishment of the test-bed setup baseline, without any secu-
rity enhancements or attack traffic, defined as the base capacity of the proxy server.
These measurements were performed first with digest authentication turned-off, and
subsequently enabled. SIPp was used to generate legitimate traffic. After obtaining
proxy baseline numbers with digest authentication enabled, attack traffic was intro-
duced into the network and performance of the setup without filters was evaluated.
Subsequently, filters were turned on to evaluate the portion of good and attack traffic
that was filtered out. For attack traffic generation, SIPstone was used to create
spoofed call attempts. Floods of requests, responses and out-of-state messages were
generated using SIPp. The protocol analyzer was also used to analyze the flow of
network packets to estimate the proportion of dropped calls that were part of legiti-
mate or attack traffic respectively. The validation and measurements were all per-
formed at two different loads; at full capacity, to determine the maximum perform-
ance of the tested configuration as a reference point, and at half capacity of the proxy
to cover the typical workloads in a carrier-class VoIP service.

Base Capacity
Base capacity was determined by generating legitimate traffic through SIPp, using
multiple pairs of loaders and handlers, controlled in an automated fashion by the

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 125

secureSIP controller. Base capacity was found by incrementing call rate until the
proxy was unable to respond to all the incoming requests, dropping legitimate calls.
As each loader/handler pair was able to generate 300 CPS, the load was incremented
pair by pair until the base capacity for proxy setup without authentication was found
to be 690 CPS, with three pairs. Network traffic analysis using wireshark also con-
firmed this base capacity.

Using the same methodology, the digest authentication mechanism was enabled,
and the new base capacity was found. The load on proxy server was incremented pair
by pair, finding the new base capacity at 480 CPS, using two pairs. The results
showed the call handling capacity of the proxy dropped from about 690 CPS to 480
CPS. Considering the proxy server was operating in stateful mode, these results vali-
date the analysis and measurements published in [20], although we present the results
at an order of magnitude higher call rates. The observed call drop is attributed to the
extra processing required for computation of nonce and hashing, and the extra SIP
messages that are introduced into the network as previously shown in Figure 2. Since
computation of hashing algorithms causes only 30% of the overhead, the main reason
for the drop (70%) in performance is due to the extra messages that digest authentica-
tion introduces into the network. For all our subsequent measurements below, we
assumed digest authentication to be enabled, and comparisons of call rate handling
capacity for various filters are always made against this benchmark of 480 CPS.

Methodology for Filter Effectiveness Validation and Measurement
The next three sub-sections provide a detailed treatment of DoS through spoofing,
method-based flooding and composite attacks. These sets of experiments measured
the impact of the DoS attacks on the unprotected SIP infrastructure and evaluated the
effectiveness of the firewall filters in preventing these attacks.

DoS through Spoofing
These tests verified the operation of the return routability filters. The setup was simi-
lar to the performance benchmarking section, with SIPp generating legitimate traffic,
and SIPstone used to launch traffic with spoofed addresses. Incremental spoofed traf-
fic attacks were launched under two different workloads, at full capacity (480 CPS)
and half capacity representing average load conditions (240 CPS). As expected, the
digest authentication mechanism was able to remove the spoofed traffic; however, the
performance penalty was such that even at half capacity, the proxy was only able to
process 3000 spoofed attempts per second, before collapsing. The return routability
filters, however, once enabled, dropped spoofed calls right at the perimeter, thus sav-
ing the proxy server from processing the additional messages. Our measurements
show that the filters removed all of the 16800 spoofed attempts per second generated
by our test-bed, at its maximum workload configuration. It should be noted here that
this maximum number is the limit of our test-bed configuration and not the limit of the
firewall.

DoS through SIP Method-Based Attacks
These tests verified the operation of the rate-limiting and state-validation filters.
Method-based attacks included three sub-types, consisting of floods of repetitive

126 G. Ormazabal et al.

Flood of Requests Flood of ResponsesFlood of Requests Flood of Responses

Fig. 12. Different types of rate-limiting attacks

requests, repetitive responses and various sequences of out-of-state messages. The
proxy was subjected to these types of attacks, with and without the corresponding
filters. We defined three types of attacks – request flood, response flood and out-of-
state flood.

The first attack consisted of sending a flood of INVITE requests (exact replica of
each other, with same transaction ID) after the call was setup with the initial request.
The second type consisted of sending a barrage of responses (any of 1XX Provisional,
2XX Success or 4XX Error). The last type consisted of flooding the proxy with re-
quests/responses sequences in random order. For all three types of attack traffic, the
flood packets that follow the first packet will have the same transaction ID, as seen in
the call-flow diagrams schematic view in Figure 12. SIPp loader/handler pairs were
used to generate both legitimate and attack traffic for these measurements.

DoS Filters Performance Results
Measurements from the different test scenarios, including benchmarking, return
routability filters and rate-limiting filters are summarized in Table 1 below. The array
of sixteen machines was used to generate the high volumes of different types of le-
gitimate as well as attack traffic. As observed in Table 1, in general, the inbuilt soft-
ware mechanisms in the SIP proxy provide negligible performance against the attack
traffic in the absence of filters. In particular, the proxy server, without the benefit of
filters, breaks down with fewer than 200 spoofed requests, when already at maximum,
but even at half load, the proxy is only able to handle less than 3000 spoofed attempts
per second. In the same setup, but with filters turned on, the performance increased
considerably, to well over 17,000 spoofed attempts per second. As noted earlier, the
amount of attack traffic handled in these experiments was determined by our specific
test-bed hardware constraints, and not by the capacity of the filters.

The effectiveness of the rate-limiting filters can be assessed by comparing results
in similar setup initially without the filters, with results with filters enabled. While
setup without filters can only deal with a maximum flood of fewer than 600 calls
(requests) per second, filters pushed the handling capacity to over 7,000 attacks per

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 127

Table 1. Measurements from different test scenarios

 Firewall Filters OFF Firewall Filters ON

Good Attack CPU Good Attack CPU

CPS CPS Load CPS CPS Load

Traffic Composition % %

Non-Auth Traffic 690 0 88 690 0 88

240 0 20 240 0 40

Auth Good Traffic 480 0 81 480 0 82

Auth Good Traffic + 240 2950 84 240 16800 41

Spoof Traffic 480 195 85 480 14400 83

Auth Good Traffic + 240 3230 84 240 8400 41

Flood of Requests 480 570 86 480 7200 83

Auth Good Traffic + 240 2970 87 240 8400 41

Flood of Responses 480 330 87 480 7200 83

Auth Good Traffic + 240 2805 86 240 8400 40

Flood of Out-of-State 480 290 85 480 7200 82

second. Even at average normal load settings, at half the capacity of proxy server, the
results without filters were not impressive, as the proxy could only handle up to 3,000
attacks per second. For measurements involving attack traffic comprised of floods of
responses, or floods of out-of-state messages, the performance without filters was
slightly worse, as the proxy collapsed around 300 attacks per second, when at maximum
load. At half load, 2,800 attacks per second could be handled. The addition of filters,
however, enhanced the proxy capacity to over 8,000 attacks per second, which again
was the maximum attack traffic we could generate in our hardware configuration.

Furthermore, we measured zero false positives and negligible false negatives.
Through protocol analysis, we could confirm that none of the legitimate traffic was
dropped while the filters dropped 99% of attack traffic, leading to 1% false negatives.
The filter algorithm is adaptive, and requires training, based on network conditions,
before it can isolate bad traffic from good traffic. Due to this adaptive nature of filters,
some amount of attack traffic manages to pass through filtering system, giving a rate
of false negatives of 1%. Additionally, since the filters did not drop any packet before
they were trained, rate of false positives was zero.

DoS through Composite Attacks
To test our DoS prevention mechanisms against extreme but perhaps more realistic
scenarios, as attackers will attempt every attack permutation at once, all the above
described attacks were launched together. Different secureSIP clients in the distributed
network were configured to launch different types of attack traffic. For instance, the
sixteen machines in the network could be configured, such that six machines gener-
ated spoofed traffic, four machines flooded the network with requests, two machines
introduced out-of-state messages and the remaining four were used to generate legiti-
mate traffic. The proxy was subjected to this composite attack, initially with no filters,

128 G. Ormazabal et al.

and subsequently with all the filters loaded on the firewall. All the other measurement
and traffic generation conditions were kept the same.

As seen in the measurement results in Table 2, a proxy conforming to the protec-
tion mechanisms specified in [1] was unable to withstand composite attacks. Without
filters, even at half capacity, the proxy was only able to handle less than 1000 CPS of
different types of attack traffic before it started dropping legitimate calls within a few
seconds of the attack (18 seconds in this specific instantiation). At maximum capac-
ity, the results were much worse, and showed practically no tolerance for any kind of
attack traffic. Once filters were enabled, the proxy dealt efficiently with as much
attack traffic as could be generated in our test-bed. Both at half load capacity, and full
capacity, the proxy server showed no sign of performance lag, operating with reason-
able CPU resources. Even in case of composite attacks, we observed zero false posi-
tives and almost negligible false negatives with filters turned on.

Table 2. Performance measurements of composite attacks

 Traffic Rate (CPS)
Filters

Good Spoof

Flood
of

Req

Out
of

State

Avg.
CPU
(%)

Off 240 800 800 800 85
On 240 7200 2400 2400 42
Off 480 100 100 100 87
On 480 4800 2400 2400 83

Benchmarking Summary
The CPU resource consumption increases linearly with the increased attack traffic
when the firewall filters are disabled. But once enabled, the filters off-loaded the
proxy of all the attack traffic, as evidenced by the non-increasing resource consump-
tion versus attack traffic load, in all of the measurements. When all filters were en-
abled, they worked together to protect the system under test from a variety of attack
traffic. No perceivable performance loss or overhead was observed in the SIP proxy,
even at the peak of the attack traffic, clearly indicating that the hardware filters had
removed the attack traffic completely.

7 Conclusions and Future Work

The solution presented in this work experimentally demonstrated various SIP vulner-
abilities that may potentially result in DoS attacks. As perimeter security is becoming
a factor of prime importance to VoIP service providers and carriers, this work sug-
gests highly scalable detection and mitigation strategies against these new SIP-
specific DoS attacks. This implementation leveraged a fast parallel processing packet-
processing server using CAM databases for storing the huge connection state tables
associated with high volumes of concurrent calls, while providing full SIP confor-
mance. A large-scale distributed test-bed, including a high-powered SIP-specific DoS
attack tool, was built to measure and verify the effectiveness and scalability of the

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 129

solution. The web-based controller, also developed as a part of this framework, pro-
vides an effective tool-kit for easy use in testing laboratories. The prototype filtering
handling capacity presented, with rates in the hundreds of calls per second, is indica-
tive that these systems can be utilized in carrier class environments. In the short term,
enhancements that cover a broader range of attack cases may be desirable. For exam-
ple, floods of INVITEs (and/or responses) with different transaction IDs within dialogs,
is a closely related, but harder, problem that needs further study. Longer term, the
application of anomaly detection, pattern recognition and learning systems, will also
be desirable for future systems based on the concepts developed in this work.

The methodologies described in this paper, are applicable to wireline and wireless
topologies, and can be extended to secure emerging technologies such as Internet
Multimedia Systems (IMS), as well as presence and unified communications infra-
structures. Other efforts also continue to extend SIP to support Presence, Messaging
and Unified Communications such as Web Services SIP (WSIP), leveraging the dual
http and SIP stacks, to allow for reliable unified communication services. The work
presented in this paper, may also help achieve secure end-to-end communication for
these services.

Acknowledgements

We would like to thank Stu Elby, Vice President of Network Architecture, Chris
Mayer, Vice President of Systems Integration and Testing, and Mike Daigle, Vice
President of Network Planning, at Verizon Technology Organization, for the sponsor-
ship of this work, and continued interest and support. We would also like to thank
Robert Ormsby, David Dumas, James Flowers and Haidar Chamas, also at Verizon
Technology Organization for their continued support and encouragement. Haidar also
offered extensive commentary on the paper. David Helms from CloudShield Tech-
nologies provided excellent technical support in the implementation and fine-tuning
of the filters. At Columbia University we would like to thank Jonathan Lennox, the
primary architect of our SIP proxy sipd, and Sankaran Narayanan the primary archi-
tect of our benchmarking tool, SIPStone, for their contributions.

References

[1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Hand-
ley, M., Schooler, E.: SIP: Session Initiation Protocol, RFC 3261 (June 2002)

[2] Baugher, M., McGrew, D., Naslund, M., Carrara, E., Norrman, K.: The Secure Real-time
Transport Protocol (SRTP), RFC 3711 (March 2004)

[3] VOIPSA VoIP Security and Privacy Threat Taxonomy, http://www.voipsa.org/
Activities/VOIPSA_Threat_Taxonomy_0.1.pdf

[4] Worldwide, I.S.P.: Security Report, Arbor Networks (September 2005), http://www.
arbor.net/downloads/Arbor_Worldwide_ISP_Security_Report.pdf

[5] CERT Advisory CA-, -06 Multiple vulnerabilities in implementations of SIP (2003),
http://www.cert.org/advisories/CA-2003-06.html

130 G. Ormazabal et al.

[6] Wieser, C., Laakso, M., Schulzrinne, H.: Security testing of SIP implementations. Technical
Report (February 20, 2005), http://www1.cs.columbia.edu/~library/
TRrepository/reports/reports-2003/cucs-024-03.pdf

[7] Roedig, U., Ackermann, R., Steinmetz, R.: Evaluating and Improving Firewalls for IP-
Telephony Environments. In: IP-Telephony Workshop (IPTel) (April 2000)

[8] Yardeni, E., Schulzrinne, H., Ormazabal, G.: SIP-aware Application Layer Firewall with
Dynamic Pinholes for Media, Columbia Technical Report (2006),
http://www.cs.columbia.edu/~hgs/papers/Yard06_Large.pdf

[9] Yardeni, E., Patnaik, S., Schulzrinne, H., Ormazabal, G., Helms, D.: SIP-aware Application
Layer Firewall with Dynamic Pinholes for Media, NANOG 38 (October 2006),
http://www.nanog.org/mtg-0610/mcbride.html

[10] Wu, Y., Bagchi, S., Garg, S., Singh, N., Tsai, T.K.: Scidive: A stateful and cross protocol
intrusion detection architecture for VoIP environments. In: International Conference on De-
pendable Systems and Networks (June 2004)

[11] Niccolini, S., Garroppo, R.G., Giordano, S., Risi, G., Ventura, S.: SIP Intrusion Detection
and Prevention: Recommendations and Prototype Implementation. In: IEEE Workshop on
VoIP Management and Security (April 2006)

[12] Sengar, H., Wijesekera, D., Wang, H., Jajodia, S.: Intrusion Detection Through Interacting
Protocol State Machines. In: International Conference on Dependable Systems and Net-
works (2006)

[13] Nassar, M., State, R., Festor, O.: VoIP Honeypot Architecture. In: IEEE International Sym-
posium on Integrated Network Management (May 2007)

[14] Chen, E.Y.: Detecting DoS Attacks on SIP Systems. In: IEEE Workshop on VoIP Man-
agement and Security at NOMS (April 2006),
http://www.comsoc.org/confs/noms/2006/docs/14_Chen.ppt

[15] Sengar, H., Wijesekera, D., Wang, H., Jajodia, S.: Fast Detection of Denial-of-Service At-
tacks on IP Telephony. In: IEEE International Workshop on Quality of Service (June 2006)

[16] Geneiatakis, D., Dagiouklas, A., Kambourakis, G., Lambrinoudakis, C., Gritzalis, S., Ehlert,
S., Sisalem, D.: Survey of Security Vulnerabilities in Session Initiation Protocol. IEEE
Communications Surveys and Tutorials 8(3) (2006)

[17] Sisalem, D., Kuthan, J., Ehlert, S.: Denial of Service Attacks Targeting a SIP VoIP Infra-
structure- Attack Scenarios and Prevention Mechanisms. IEEE Network Special Issue on
Securing VoIP 20(5) (2006)

[18] CloudShield,CS- (2000),
http://www.cloudshield.com/Products/cs2000.asp

[19] Columbia InterNet Extensible Multimedia Architecture (CINEMA),
http://www.cs.columbia.edu/IRT/cinema

[20] Salsano, S., Veltri, L., Papalilo, D.: SIP security issues: the SIP authentication procedure
and its processing load. IEEE Network 16(6) (2002)

[21] Singh, K., Schulzrinne, H.: Failover and load sharing in SIP telephony. In: International
Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), Philadelphia, Pennsylvania (July 2005),
http://www1.cs.columbia.edu/~kns10/publication/sipload.pdf

[22] Schulzrinne, H., Narayanan, S., Lennox, J., Doyle, M.: SIPstone - benchmarking SIP server
performance. sipstone 0402.pdf (April 2002), http://www.sipstone.org/files/

[23] SIPp, http://sipp.sourceforge.net
[24] wireshark, http://www.wireshark.org/docs/man-pages/wireshark.html
[25] MySQL, Open Source SQL server, http://www.mysql.com

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 131

Appendix A

Call Flows during Digest Authentication, as seen in Figure 2

The first INVITE message received by proxy server from user agent does not contain
any credentials.

F1 INVITE UA -> Proxy

INVITE sip:test1@cs.columbia.edu SIP/2.0
Via: SIP/2.0/UDP 127.0.0.1:7898
Max-Forwards: 70
From: sip:test5@cs.columbia.edu
To: sip:test1@cs.columbia.edu
Contact: sip:test5@127.0.0.1:7898;transport=UDP
Subject: SIPstone invite test
CSeq: 1 INVITE
Call-ID: 1736374800@lagrange.cs.columbia.edu
Content-Type: application/sdp
Content-Length: 211
v=0
o=user1 53655765 2353687637 IN IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

After receiving the first INVITE message, the proxy sends back a “407 Authentica-

tion Required” asking user for authentication. This message contains a freshly com-
puted nonce value that must be sent back by user to prove their identity.

F3 407 Proxy Authentication Required Proxy -> UA

SIP/2.0 407 Proxy Authentication Required
Via: SIP/2.0/UDP 127.0.0.1:7898
From: sip:test5@cs.columbia.edu
To: sip:test1@cs.columbia.edu; tag=2cg7XX0dZQvUIlbUkFYWGA
Call-ID: 1736374800@lagrange.cs.columbia.edu
CSeq: 1 INVITE
Date: Fri, 14 Apr 2006 22:51:33 GMT
Server: Columbia-SIP-Server/1.24
Content-Length: 0
Proxy-Authenticate:Digest
realm="cs.columbia.edu",
 nonce="6ydARDP51P8Ef9H4iiHmUc7iFDE=",
 stale=FALSE,
 algorithm=MD5,
 qop="auth,auth-int"

132 G. Ormazabal et al.

User replies back to the “407 Authentication Required” challenge by providing au-
thorization credentials, the nonce value to the proxy server:

F6 INVITE UA -> Proxy

INVITE sip:test1@cs.columbia.edu SIP/2.0
Via: SIP/2.0/UDP 127.0.0.1:7898
Max-Forwards: 70
From: sip:test5@cs.columbia.edu
To: sip:test1@cs.columbia.edu
Contact: sip:test5@127.0.0.1:7898;transport=UDP
Subject: SIPstone invite test
CSeq: 3 INVITE
Call-ID: 1736374800@lagrange.cs.columbia.edu
Content-Type: application/sdp
Content-Length: 211
Proxy-Authorization:Digest
username="anonymous",
realm="cs.columbia.edu",
nonce="6ydARDP51P8Ef9H4iiHmUc7iFDE=",
uri="sip:test1@cs.columbia.edu",
response="0480240000edd6c0b64befc19479924c",
opaque="", algorithm="MD5"

v=0
o=user1 53655765 2353687637 IN IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone Engineering Issues
e=mbone@somewhere.com
c=IN IP4 128.3.4.5
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

	Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP Based VoIP Systems
	Introduction
	Problem Definition: The SIP Threat Model
	Related Work
	SIP-specific DoS Solutions and Filter Design
	System Architecture and Implementation
	Benchmarking Methodology
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

