

The Association of System
Performance Professionals

The Computer Measurement Group, commonly called CMG, is a not for profit, worldwide organization of data processing
professionals committed to the measurement and management of computer systems. CMG members are primarily concerned
with performance evaluation of existing systems to maximize performance (eg. response time, throughput, etc.) and with capacity
management where planned enhancements to existing systems or the design of new systems are evaluated to find the necessary
resources required to provide adequate performance at a reasonable cost.

This paper was originally published in the Proceedings of the Computer Measurement Group’s 2006 International Conference.

For more information on CMG please visit http://www.cmg.org

Copyright 2006 by The Computer Measurement Group, Inc. All Rights Reserved
Published by The Computer Measurement Group, Inc., a non-profit Illinois membership corporation. Permission to reprint in whole
or in any part may be granted for educational and scientific purposes upon written application to the Editor, CMG Headquarters,
151 Fries Mill Road, Suite 104, Turnersville, NJ 08012. Permission is hereby granted to CMG members to reproduce this
publication in whole or in part solely for internal distribution with the member’s organization provided the copyright notice above is
set forth in full text on the title page of each item reproduced. The ideas and concepts set forth in this publication are solely those
of the respective authors, and not of CMG, and CMG does not endorse, guarantee or otherwise certify any such ideas or concepts
in any application or usage. Printed in the United States of America.

http://www.cmg.org

10/12/2006 Page 1 of 12

A TUTORIAL ON SIP APPLICATION SERVER PERFORMANCE AND
BENCHMARKING

Curtis Hrischuk, Ph.D.

WAS SIP and IMS Lead Performance Engineer, IBM Software Group

Gary DeVal
WAS SIP Performance Engineer, IBM Software Group

31st Annual International Conference of The Computer Measurement Group, Inc.

December 3 - 8, 2006
Reno, Nevada USA

The Session Initiation Protocol (SIP) is an internet protocol for establishing sessions
between two or more parties. It is becoming ubiquitous in uses such as Voice over IP,
instant messaging, Internet TV, and others. The Java community has even provided a
standardized API so that SIP applications can now be built within J2EE application
servers. These new capabilities also bring with them new performance engineering
methods, tools, and benchmarking needs. This paper describes the experiences and
processes for the performance engineering of SIP applications in a J2EE environment.

1. Introduction
The Session Initiation Protocol (SIP) [1] is used for
negotiating sessions between two or more parties
that want to interact or communicate. SIP is used
for Voice over IP (VoIP) or instant messaging
applications to connect parties that want to
exchange data, audio, or video. SIP differs from
other approaches to session negotiation because it
is decentralized, moving the control handshaking to
the end points rather than the control being
centralized. This makes it extensible, scalable, and
useful for mobile applications. SIP is becoming
ubiquitous. Recently, application servers have been
developed which interact using the HTTP and SIP
protocols for the same application; referred to as
converged applications. It is expected that the next
generation of web based applications will be
converged. SIP has performance characteristics
that differ from HTTP in several respects. So, it is
important for the performance engineer to
understand those differences and how to negotiate
them.

This paper is intended to be a tutorial about SIP and
its performance characteristics. The paper is
structured as follows. SIP is relatively new so an
overview is presented first. This is followed by a
discussion of tuning Linux to support SIP traffic.
Then a SIP application performance engineering
methodology is presented.

2. SIP Overview
Comparing SIP to the popular HTTP protocol is the
logical place to start. SIP is similar to HTTP in the
following ways: SIP requests and responses are

text, looking very similar to HTTP/1.1. Like HTTP,
the requests and responses can contain message
bodies: typically session descriptions. An example
SIP request is shown in Figure 1.

Just like HTTP, SIP uses a URI to uniquely identify a
user, device or service. In Figure 1, the URI is
“sip:alice@domain2.com”. Also, a servlet lifecycle
specification has been developed for SIP, much like
the HTTP servlet definition. This enables SIP
applications to be developed within a common
framework for deployment in hosting environments
called SIP Servlet Containers, analogous to HTTP
Servlet Containers.

SIP differs from HTTP in several respects:

• It has QoS latency requirements on protocol
responses;

• It has a peer to peer architecture, rather than
the HTTP client-server approach;

• A SIP servlet may also act as a SIP client;
• Transactions and sub-transactions may be

stateless or stateful;
• Interactions are not only synchronous (like

HTTP) but may also be asynchronous;
• More than one response may be generated in

response to a single request; and
• A single SIP request may be served by

multiple SIP applications in the same
application server.

These characteristics of SIP provide a much more
flexible and versatile application framework than
HTTP, and can therefore be used to overcome some
of HTTP’s limitations.

10/12/2006 Page 2 of 12

Figure 1: SIP Invite Request

1.1 SIP Example Message Exchange
An example exchange between two SIP end-points
(User Agents -UA) is shown in Figure 3. In this
example, bob@domain1.com is trying to place a VoIP
phone call with alice@domain2.com. Bob’s UA
begins the call by sending the INVITE SIP message
which traverses the network using intermediate SIP
Proxy servers to eventually reach Alice’s UA. Rather
than wait for the target end point to send back a
response, the Proxy servers send the intermediate
SIP response TRYING to indicate that effort to reach
the target is occurring. The target end point (Alice’s
UA) responds that the phone is RINGING and, finally,
a 200OK response is sent when Alice picks up the
phone. Bob’s UA then sends the acknowledgement
(ACK) to tell Alice’s UA that the call can proceed. It is
important to emphasize that the actual media data
traffic (e.g., the voice conversation) does not use the
SIP protocol but other protocols for that purpose, such
as the Real Time Protocol [2]. Finally, Alice hangs up
the phone so the BYE message is sent to Bob,
followed by Bob’s OK message to acknowledge
receipt of the BYE.

The SIP exchange of Figure 3 illustrates the use of
several of the SIP message types, called methods.
There are several other SIP methods that can be used
for various purposes and they are listed in Table 1 for
completeness.

1.2 SIP Timing Requirements
Like many other protocols, SIP has QoS timing
requirements for when a response is expected. As
shown in Figure 2, the sender of the INVITE message
expects a TRYING response within 500 milliseconds
or it is assumed that the INVITE message was lost in
transmit and the INVITE is retransmitted. There are
several additional timers that govern the SIP protocol

[1] and they are shown in Table 2. A key performance
goal is to not exceed the timer values because this
can have significant consequences where tens of
thousands of requests are retransmitted.

Method Description
INVITE initiate call
ACK confirm final response
BYE terminate (and transfer) call
CANCEL cancel searches and “ringing”
OPTIONS query recipient’s supported

features and availability
REGISTER register with location service
INFO mid-call information (ISUP)
COMET precondition met
PRACK provisional acknowledgement
SUBSCRIBE subscribe to event notification
UNSUBSCRIBE cancel event notification
NOTIFY notify subscribers
REFER ask recipient to issue SIP request

(call transfer)
MESSAGE instant message body transport

Table 1: SIP Protocol Methods

Proxy

proxy.domain1.comUser Agent

bob@domain1.com

INVITE
INVITE

100 TRYING
100 TRYING

Response in
500 msecs

Figure 2: SIP Timing Constraints

INVITE sip:alice@domain2.com SIP/2.0
Via: SIP/2.0/UDP 9.150.21.198:5060;rport;branch=z9hG4bK023C1
From: sip:bob@domain1.com;tag=2968942665
To: sip:alice@domain2.com
Contact: sip:softphone@9.150.21.198:5060
Call-ID: 1403092@192.168.0.103
CSeq: 1001 INVITE
Max-Forwards: 70
Content-Type: application/sdp
Content-Length: 240

v=0
o=17476002050 64593273 64593313 IN IP4 9.150.21.198
c=IN IP4 9.150.21.198
t=0 0
m=audio 8000 RTP/AVP 0 8 101
a=rtpmap:0 pcmu/8000

10/12/2006 Page 3 of 12

Proxy

server.domain2.com

Proxy

proxy.domain1.comUser Agent

bob@domain1.com

User Agent

alice@domain2.com

INVITE INVITE
INVITE100 TRYING

100 TRYING
180 RINGING

180 RINGING

180 RINGING 200 OK
200 OK

200 OK

ACK

200 OK

BYE

Media Session

Figure 3: Example SIP Exchange

Timer Default value Meaning
T1 500 ms Round-trip time (RTT) estimate
T2 4 sec. Maximum retransmission interval for non-INVITE requests

and INVITE responses
T4 5 sec. Maximum duration that a message can remain in the network

Timer A initially T1 INVITE request retransmission interval, for UDP only
Timer B 64*T1 INVITE transaction timeout timer
Timer C > 3 min. Proxy INVITE transaction timeout
Timer D 32 sec. for UDP

0 sec. for TCP and SCTP
Wait time for response retransmissions

Timer E initially T1 Non-INVITE request retransmission interval, UDP only
Timer F 64*T1 Non-INVITE transaction timeout timer
Timer G initially T1 INVITE response retransmission interval
Timer H 64*T1 Wait time for ACK receipt
Timer I T4 for UDP

0 sec. for TCP and SCTP
Wait time for ACK retransmissions

Timer J 64*T1 for UDP
0 sec. for TCP and SCTP

Wait time for retransmissions of non-INVITE requests

Timer K T4 for UDP
0 sec. for TCP and SCTP

Wait time for response retransmissions

Table 2: SIP Protocol Timers

Network Elements

Proxy
SIP

Server

Proxy
SIP

Server

Serving
SIP

Server

Serving
SIP

Server

Interogat-
ing SIP
Server

Interogat-
ing SIP
Server

Home
Subscriber

Server

Home
Subscriber

Server

Serving
SIP

Server

Serving
SIP

Server

Proxy
SIP

Server

Proxy
SIP

Server

User
Agent
bob@

domain1.
com

User
Agent
alice@

domain2.
com

1.5 seconds1.5 seconds

Figure 4: Example VoIP Network Traversal (Signalling Plane)

10/12/2006 Page 4 of 12

It is also useful to view how a VoIP call is set-up,
traversing the network.

 is such a network traversal, where several SIP
(proxy) servers forward the SIP messages. As shown
in the diagram, several interactions with intermediate
servers may be required to establish a VoIP call.

POTS (traditional voice network) timing requirements
allow 1.5 seconds for the call to be established (from
the initial INVITE to destination RINGING). This is a
tight requirement for several reasons: there are tens
of thousands of users competing for these resources;
network latency slows the communication; queuing
occurs at the servers; database accesses are needed
to look-up information.

Clearly, SIP performance requirements are
challenging.

1.3 Using SIP for Converged
Applications

To make SIP easy to use, a Java application
programming interface (API) similar to HTTP servlets
has been devised, called JSR 116 [3]. This API
provides an easy-to-use SIP programming model.
Converged applications that can interact via the HTTP
and SIP protocols can be enabled with an architecture
similar to that shown in Figure 5 [4].

The beauty of this design is that an application can be
multi-modal with the same application context shared
by the HTTP portion of the application as well as the
SIP portion of the application. This means that only
one converged application need be written for the two
protocol types.

To understand the power of the converged application,
a simple application description may be useful.
Imagine you are trying to repair some appliance so
you bring up the manufacturer’s web site. You enter
the model number, year, and other relevant
information into a web form and submit the form.
Based on your input, a database is queried to identify
the technician most apt to assist you in resolving the
issue that is currently free to take a phone call. When
the search results are returned, you are offered the
option of calling that technician to discuss the situation
for the small fee of 50 cents. You choose the option
and are directly connected to the technician,
conversing with them using your PC’s microphone
and speaker!

P
re

se
nc

e

M
es

sa
gi

ng

S
es

si
on

M

an
ag

er

O
th

er
s

Web Container

HTTP Container
Pre-processor

HTTP Container
Pre-processor

SIP Container
Pre-processor
SIP Container
Pre-processor

HTTPHTTP SIPSIPSSLSSL

UDPUDPTCPTCP

Shared Ports
Figure 5: Converged Application Architecture

3. SIP Stack Tuning
As suggested in Table 2, SIP can be used with
several transport protocols but the most commonly
used protocol is UDP. The benefit of UDP is that
there is low state overhead (i.e., no need to set up a
TCP connection) and efficient processing of the
(usually) small SIP packets. TCP is normally used
where encryption (e.g., SSL) is required or the SIP
message size exceeds the MTU of UDP. Since the
majority of SIP traffic is over UDP, tuning the server
for UDP communication will result in fewer lost
packets and reduce the overall latency.

There are three levels at which the SIP
communication stack tuning occurs. The most
obvious is at the kernel level by increasing the number
of communication buffers. However, the NIC driver
tuning is also important so that bursts of SIP traffic do
not result in delays and retransmission of messages.
The NIC tuning increases the buffer capacity and
decreases the interrupt interval to move the packet
from the NIC memory to the kernel and then into the
user space. Lastly, general network tuning needs to
be applied. The examples given in this section are for
the Linux 2.6 kernel with lessons learned from the
Linux 2.4 kernel as well.

1.4 General Network Tuning
The first tuning step is to remove unused network
interfaces. Typically, a server will have two or four
network interfaces. Through trial and error, it was
found that there was a large performance hit on the
active network interface if the unused network
interface remained in the active profile. This was

10/12/2006 Page 5 of 12

unexpected since disabling an interface should be
sufficient but the measurements showed that
removing an unused interface was required. This
problem was diagnosed using a simple FTP
throughput test to measure the network bandwidth
between servers. Very low throughput was observed
until the unused network interfaces were removed.

The second general network tuning optimization was
to disable the auto-negotiate Ethernet setting on the
servers and the Ethernet switch that the servers were
connected to. This problem was again diagnosed
using a simple server-to-server FTP test with a large
file. A paltry throughput of 5 Mbps was observed with
speeds as low as 13 Kbps. This was resolved by
forcing the Ethernet values to: 1000 Mbs, full duplex,
on both. When either side was set to auto-negotiate
speed there were performance problems.

These two changes increased the SIP message
throughput by 748 SIP messages per second which is
about 25%.

1.5 NIC Driver Tuning
The NIC driver tuning is very low level. The
underlying goal is to change the parameters so that a
received packet is removed from the NIC’s memory as
soon as possible. This reduces message processing
latency at the expense of low amortization of the CPU
processing overhead (e.g., cache flushing). The
parameters for this are:

• adaptive-rx, adaptive-tx: adaptively adjust
interrupt intervals based on packet rates. This
should be disabled.

• rx-μsecs: how many μsecs to delay an RX
interrupt after a packet arrives. A low value is
preferred.

• rx-frames: how many packets to delay an RX
interrupt after a packet arrives. A low value is
preferred.

• tx-μsecs: How many μsecs to delay a TX interrupt
after a packet is sent. A low value is preferred.

• tx-frames: How many packets to delay a TX
interrupt after a packet is sent. A low value is
preferred.

An example Linux command to set up the NIC
interface parameters is ‘ethtool -C eth0 adaptive-rx off
adaptive-tx off rx-usecs 20 rx-frames 5 tx-usecs 60 tx-
frames 11’.

Another tuning step is to set up the NIC receive and
transmit ring parameters, which should be increased
to the largest values possible. The Linux command to
do this is “ethtool -G eth0 rx 511 rx-jumbo 255 tx 511’.

1.6 Kernel Tuning
The Linux tuning parameters for the SIP stack are
shown in Table 4. There is much literature that is
available so no further explanation is provided here.
Also use the /sbin/ifconfig command to change the
maximum size of the interface’s transmit queue (e.g.,
‘/sbin/ifconfig eth0 txqueuelen 2000’).

1.7 Results of SIP Stack Tuning
The MGEN tool (http://mgen.pf.itd.nrl.navy.mil/) was
used to select a NIC driver and to explore the UDP
performance of the tuning modifications. The Multi-
Generator (MGEN) is open source software by the
Naval Research Laboratory (NRL) PROTocol
Engineering Advanced Networking (PROTEAN)
Research Group. MGEN provides the ability to
perform IP network performance tests and
measurements using UDP/IP traffic.

MGEN was used to select from the three NIC drivers
that were available at the time. The three drivers
were:

• The original tg3 driver in RHEL4, version 3.27-rh
• A new tg3 driver from Broadcom, version 3.43b
• A NIC driver from Broadcom, version 8.3.14

The performance of each of these drivers was
examined using bidirectional UDP traffic between two
test systems that were connected using a Gigabit
Ethernet switch. The selected packet size is 338
bytes which was found to be the average SIP packet
size. The results of the comparison are shown below
in Table 3, with the new tg3 driver providing the best
performance with the lowest packet loss rate at a high
message rate. For this reason, the new tg3 driver
was selected.

Message Rate
(1,000 pkts / sec)

Bit rate
(Mbps)

Original
tg3 driver

New tg3
driver

Bcm5700
driver

10 27 - - -
20 54 - - -
30 81 0.1 0.0 0.0
40 108 - 0.0 -
50 135 0.0 0.0 0.1
60 162 13.3 1.0 0.8
70 189 15.5 9.0 12.1
80 216 18.8 11.9 17.0

Packet size: 338 bytes Percent Packet Loss

Table 3: NIC Driver Packet Loss Comparison

The next set of measurements was to continue the
NIC and kernel tuning, measuring the benefit that it
produced. As shown in Table 5, there a is significant
improvement in the processing of UDP traffic from the
tuning, at all message rates.

10/12/2006 Page 6 of 12

 Table 4: Linux 2.6 SIP Stack Tuning

Table 5: NIC and Kernel Tuning Benefits

2 A SIP Performance Engineering
Process
There are three areas that SIP application
performance needs to be concerned with:

• Latency through the application: Unlike HTTP,
SIP has sub-second timing requirements that
affect the health of the system. There are many
sources of latency in a SIP application, including
SIP stack processing time, SIP stack queuing,
virtual machine garbage collection latency, thread
scheduling, etc.

• SIP message throughput (server): The rate at
which SIP messages need to be processed must
be faster than the input rate of offered traffic. This
is governed by the latency factors above, as well
as the CPU and network capacity.

• Session capacity per node: SIP is a stateful
application so, for each SIP user interaction, there
is session state that is persisted for the duration of
the call. SIP calls may have a duration of six or
more minutes and be offered at a rate of hundreds
of calls per second, translating to tens of
thousands of active sessions at any given time.

The result is that a significant amount of memory is
consumed in maintaining the session state. Since
most operating systems have a limit on the amount of
data memory that a process may access, each SIP
application process will be able to support some
maximum number of SIP sessions.

These three areas have several input and output
factors that go into devising the architecture of an
application and the equipment needed to meet the
capacity requirements. A performance engineering
process for SIP needs to keep each of these areas in
focus. When conducting performance tests, these
factors, as well as others, need to be monitored. This
is all examined in the following sub-sections.

2.1 SIP Performance Input Factors
There are many input factors into the performance of
a SIP application. The most important factors are:

• Application latency budget: As shown in Figure 2,
there are SIP timing constraints that the SIP stack
and application needs to honor. For engineering
purposes, a latency budget is allocated which is
the mean delay with a standard deviation as well

Without tuning With kernel and
NIC tuning

10 27 0.16% 0.00% -0.16%
20 54 0.29% 0.00% -0.29%
30 81 0.43% 0.02% -0.41%
40 108 2.18% 0.01% -2.18%
50 135 7.23% 0.05% -7.18%
60 162 18.06% 1.02% -17.04%
70 189 25.81% 8.96% -16.85%
80 216 31.50% 11.92% -19.59%

New tg3 Driver Percent Packet Loss DeltaMessage Rate
(1,000 pkts / sec)

Bit rate
(Mbps)

Kernel Parameter Description
rmem_max maximum receive window
rmem_default default receive window
wmem_max maximum send window
wmem_default default receive window
optmem_max socket option memory allocation limit
tcp_rmem Receive buffer allocations
tcp_wmem Send buffer memory allocations
tcp_mem TCP memory usage limits in pages
max_dgram_qlen maximum data queue length per socket in packets/datagrams
message_burst Burst rate limit for log messages
hot_list_length max length of per cpu packet buffer allocation list
mod_cong Receive queue lengths below this are only moderately congested
lo_cong Receive queue lengths below this have low level congestion
no_cong Receive queue lengths below this are not congested
no_cong_thresh Low water mark for re-starting congested devices
netdev_max_backlog Maximum receive packet backlog before congestion control is enforced

10/12/2006 Page 7 of 12

as a 99.99 percentile delay through the
application. Usually, the main factor in this
latency would be garbage collection time in a
virtual machine based application (e.g., Java).

• System garbage collection latency budget: As
shown in Figure 4, a SIP application is one
element in the entire system. To engineer the
system, a SIP latency budget is allocated to each
element in the system. This latency budget is
typically more flexible than the application latency
budget because there is some elasticity in the
system.

• System configuration: Depending on the
workload, a single server may be adequate or a
cluster of servers may be needed. Another
significant option is whether a high availability
configuration is needed to avoid a single point of
failure. High availability introduces more activity
in a VM-based application because, in addition to
the regular application objects, state objects are
replicated to copy state information from a
working VM to a backup VM.

• Type of application: There are several canonical
architectures for SIP applications (e.g., proxy,
Back-to-back user agent) and each has its own
performance profile.

• Maximum SIP message rate: Clearly, a major
workload factor is the rate at which SIP messages
are presented to the application and the
application’s processing rate must exceed this
value.

• Maximum session creation rate: The rate of
memory consumption is governed by the session
creation rate. Session creation rate also affects
CPU utilization due to the memory management
activity required for new session objects.

• Duration the session exists: Each user session
can expire due to a default session time-out value
in the sip.xml file of the application or if the end-
points terminate the session. Session duration,
session creation rate, and per-session memory
consumption drive working memory requirements
for all system components which maintain session
state.

• Maximum application session memory
consumption: This is the amount of memory
consumed when a user session is created and
during the lifetime of the user session. This is
usually specified as the KBytes per application
session.

• Average CPU utilization: For operational
purposes, it is useful to specify a budget for the
CPU consumption. This is typically less than
100% to allow for management and operating
system activity.

• Transport type: As mentioned, UDP is the
primary SIP transport. TCP is an option if SIP
messages are too large or data encryption is
needed for security. UDP and TCP have differing

performance profiles.
• Authorization: In some cases, a SIP application

may have to perform authentication and
authorization, which adds performance overhead
to the system.

These factors help to characterize the overall behavior
of the application. Various environmental factors
(discussed next) must also be considered to engineer
SIP application performance.

2.2 SIP Performance Environment and
Tuning Factors

Deployment and tuning of a SIP application defines an
execution environment. Key execution environment
performance factors are:

• Number of servers: If the maximum SIP
message rate or maximum session creation rate
exceeds that of a single server, then a cluster of
servers is usually configured;

• Number of CPUs per server: The more
processors, the faster the processing of the SIP
stack and other maintenance activities (e.g., VM
garbage collection);

• Number of SIP application processes per server:
A single SIP application process may not have
enough memory to support the rate at which
sessions are created and the duration for which
those sessions exist; and

• Virtual machine tuning values: If a virtual
machine environment is used for the SIP stack
or SIP application, there are many tuning factors.

These are the key environmental factors.

In particular, a virtual machine environment [5, 6],
provides many tuning opportunities that affect latency,
message throughput, and memory consumption.
Most of this tuning revolves around reducing garbage
collection latency which affects all of the key
performance areas for SIP applications. Those
options that are important for SIP are:

• Heap size: The heap size is the working
memory for creating SIP and application objects.
It limits the number of concurrent SIP sessions.
It is also important because it affects the
garbage collection latency; in general, the larger
the heap the longer the garbage collection
latency. A starting heap size of 800 MBytes is
reasonable.

• Garbage collection algorithm: There are many
garbage collection options available for each VM
environment and care must be taken to select
the one that has the lowest latency and/or most
deterministic latency during the application
execution. Recent generational garbage
collection algorithms have very good
performance.

10/12/2006 Page 8 of 12

• Number of concurrent, foreground GC threads:
When the amount of free memory on the heap
reaches a low level, a garbage collection occurs
which takes control of all of the available CPUs
in order to perform a garbage collection in the
shortest possible time.

• Number of concurrent, background garbage
collection threads: During the execution of the
application, there are idle CPU periods where
background garbage collection threads can
perform preparatory work, e.g. marking dead
(unused) objects, in order to reduce the required
execution time when a garbage collection has
full use of the CPUs.

• Object allocation tax rate: Another technique to
reduce the latency of a “stop the world” garbage
collection is to perform a little garbage collection
activity each time more memory is used from the
heap. This amortization of the garbage
collection is not done by threads specific to
garbage collection but on the threads that
execute on behalf of the application. This can
be thought of as an object allocation tax.

Each VM environment has additional tuning options
and it is suggested to consult their literature.

2.3 SIP Performance Engineering
Process

Managing all of these various factors that affect
performance requires a methodical approach. The

SIP performance engineering process that has
evolved for our purposes is shown in

Figure 6. It begins with a performance test
specification that identifies the key factors for the SIP
application (see previous sub-sections) since not all
factors have equal weight. A practical requirement for
efficiency and repeatability is to have an automated
test execution framework that will perform a load test
on the system and collect the results. Then a test
script can be generated to execute multiple
measurement tests on the SIP application,
systematically exploring the various input,
environment, and tuning factors. Some form of post-
execution automated analysis is necessary because
of the large volume of data collected. A comparison
analysis of several different measurement tests within
the same test specification, across different SIP
applications, or different system configurations is very
useful – automation is again recommended here.
Finally, a proposal to enhance the performance, or
tune the system, is the result.

The automated test execution that was devised for our
purposes, affectionately referred to as Convergence
Automation with BASH (CAB), was based on BASH
shell scripts that followed important programming
conventions.

The CAB design had several key goals: it would
encapsulate and encode best practices, such as
tuning operations; capture all relevant information for
performance diagnostics; use secure communication
(e.g., SSL) between the system components; have
minimal dependencies with no special languages or
tooling (i.e., the console is your IDE); use defensive
programming (i.e., use assert to know if something
went wrong); build debugging support into all steps
(i.e., log everything); and provide an incrementally
extensible platform.

The structure of the Convergence Automation with
Bash (CAB) framework is shown in

Figure 7. In this configuration, the Controller controls
the execution of the Load Driver and the System
Under Test. The Test Configuration File has the
information needed to execute the test on the system.
The System Configuration Files provide parameter
values for CAB so that it is easy to retarget and to
maintain CAB. The Personal Configuration Files list
those parameter values that cut across different
configurations or test runs. For flexibility, a test
parameter could exist in multiple files or have a
different value specified on the command line. The
first occurrence in the search for the parameter would
be used. The different configuration files were
searched in the following order to minimize changes
to configuration files: (1) command line parameters;
(2) Personal Configuration File; (3) Test Configuration
file; (4) the System Configuration files that are
installed with CAB; and (5) default configuration
values specified in the scripts.

The general behavior of a SIP measurement test is
as follows:

1. Describe the system (i.e., Load Driver(s) and
System Under Test (SUT)) and test
parameters in a test configuration file.
Additional system configuration files are
provided with CAB for default values or
customization of CAB.

2. Start the control script, using command line
options that identify the type of test to execute,
the configuration of the system, as well as
other parameters that are relevant to each
execution (e.g., SIP calls per second). The
control script then completes the remaining
steps.

3. Stop all the SUT servers in the SUT, clear out
their log files, and reboot the servers.

4. Start the SUT servers.
5. The Load Driver will generate a small load

against the SUT to warm it up. This warm up
test allows for classes to be loaded, the VM
Just In Time (JIT) compiler to compile

10/12/2006 Page 9 of 12

frequently used classes, as well as other start
up operations.1

6. Measurement tools begin running on the Load
Driver and the SUT servers to capture
resource usage.

7. The Load Driver generates the specified load
against the SUT for a specified period of time
(referred to as the test1 period).

8. When the test period ends the measurement
tools and the Load Driver are stopped.

9. The measurement data, log files, and other
relevant information is gathered and stored in
a zip file. The zip file can be uploaded to the
options File Server for publishing or archival
purposes.

Many variations to this general flow are possible using
command line options for flexibility.

CAB has been designed to be able to modify all
identified environment factors, input factors, and
tuning factors. In a period of three months, 1,103
stored experiments were performed that generated
23.4 GBytes of compressed data.

Diagnosing SIP performance issues is difficult
because it has a time sensitive component that can be
sub-second in nature. Over time, the collected data
evolved to include: load driver logs, SIP application
server logs, SIP application server configuration files,
servlet configuration files, any error files (e.g., core,
heapdump, failure event reports, javacore), tuning
scripts, module information, hardware information,
operating system information, and resource
measurement data (e.g., NMON [7]). In essence, any
information that would be necessary to completely
define the test scenario was collected, aside from the
application binary libraries. This facilitates precise
analysis of observed SUT behaviors, as well as
accurate test reproduction.

The default behavior during test execution was to also
capture SIP packet traffic using Ethereal [8] just
before and just after the steady state measurement
period. This captured traffic was analyzed to
understand if SIP messages were being retransmitted
or if SIP protocol errors were occurring. Optionally,
the captured SIP packets could also be stored in the
zip file for detailed analysis. Note that SIP packets
were not captured during the steady state

1 A test variation is to start the SUT servers while the warm up load
is occurring. This was done so that the garbage collection activity
of all of the servers would not be synchronized. For example, if the
load was applied to all of the servers at the same time, then the
load balancer would ensure each server had the same call rate
applied so their rate of object creation and death is the same,
resulting in each server performing a garbage collection at the same
time.

measurement period because packet capture is disk
and CPU intensive, and thus would perturb the
system under test and invalidate resource
measurements.

The default behavior also recorded ping activity
between several servers to monitor the network
connectivity. Like all networks, occasional disruptions
of network connectivity arise that cause interruptions
in SIP communication and application processing. By
recording the ping activity it was possible to quickly
identify if an issue was caused by the network or the
application.

2.4 Methodology for Analyzing SIP
Performance

Once the data is collected, the analysis can begin.

The first analysis step is to pre-screen the input data
to determine if the measurements are valid. The SIP
statistics are generated from the Ethereal’s analysis of
the captured SIP traffic and indicate if there were any
protocol errors or retransmissions. Examine the SUT
log files or other failure indicators for processing
exceptions. Exceptions should be examined to
determine whether they related to the test directly or
may have been peripheral or unrelated to the
functionality being tested. The data in the log files
may be informational, i.e. they do not usually indicate
severe problems (those show up in the next step) and
provide useful clues if functional problems occurred
during the test run. It is possible that extreme
situations occurred resulting in thread dumps, heap
dumps, and Java core files which would indicate an
unsuccessful test and problems. Exceptions directly
related to the functionality being tested may indicate
functional or performance problems which can
invalidate performance analysis of the test results.

The next step is to process the input data for a single
run, which takes two forms. The first analysis form is
as time series graphs to be able to review the
behavior of key parameters at a glance. This is
important because generating statistics from the
measurements can be misleading or fail to identify
other issues. As an example,

Figure 8 is the time series graph for the CPU
utilization of the SUT while under a fairly constant load.
What is unusual is that the CPU utilization follows a
square wave for no apparent reason – a fact that
would not be evident from a calculation of the mean
CPU utilization or standard deviation value. After
much investigation it was discovered that the Linux
Name Service Caching Daemon (nscd) was not
started and this was the source of the problem. Since
nscd was not running, every SIP message request
initiated a DNS request to lookup an IP address from
a given hostname.

10/12/2006 Page 10 of 12

Test
specification

Test
specification

Performance
measurement
Performance
measurement

Measurement
analysis

Measurement
analysis Performance

proposal or
plan

Performance
proposal or

plan

Comparison
analysis

Comparison
analysis

Test
generation

Test
generation

Figure 6: SIP Performance Engineering Process

Load Driver

System
Under Test

(SUT)
- single or

cluster

Controller
(BASH
shell)

File Server
(optional
archival)

Test Config File

System Config
Files

RSA/
SSLRSA/

SSL

RSA/
SSL

Result (zip) File
Analysis

tool
Analysis

toolPersonal Config
File

SIP /
HTTP

Figure 7: Measurement Automation Framework

10/12/2006 Page 11 of 12

Figure 8: Effect of NSCD on Utilization

At some point in the stream of requests, either the
name server considered this an incoming denial of
service or the Linux TCP stack considered it to be a
denial of service outgoing – the result was that all
name lookups were ignored for a period of time.
Once the nscd was started the problem disappeared.

The second analysis form is to generate statistics for
the various factors during the steady-state portion of
the measurements. The statistics that were recorded
for each factor are: mean, standard deviation, 95th
percentile, 99th percentile, maximum, minimum, sum
of squares, and a count of the number of events.
These statistics can then be compared for multiple
runs, different configurations, etc. The statistics can
then be used to calculate a transactional cost, such as
the CPU cost per SIP dialog, CPU cost per SIP
message, number of I/Os per SIP message, etc.

3 Conclusion
A tutorial on the performance of SIP, as it relates to an
application server, has been reviewed. A high-level
performance engineering methodology has been
presented which is based on two years of experience
in this area.

SIP can be thought of as a protocol with soft timing
deadlines. For this reason, SIP differs markedly from
HTTP. In the very near future, applications will

converge so that they will receive input from both
HTTP and SIP sources. This will present a continuing
performance challenge which will be very interesting.

4. Acknowledgements
Many thanks are extended to Dazhi Wang, Mohit Jain,
Jay Tunkel, and Don Boulia..

5. References
[1] RFC 3261

[2] RFC 1889

[3] JSR 116 - SIP Servlet Specification

[4] Erik Burckart. “Session Initiation Protocol in
WebSphere Application Server V6.1 -- Part 1”, IBM
WebSphere Developer Technical Journal. http://www-
128.ibm.com/developerworks/websphere/techjournal/
0606_burckart/0606_burckart.html. June 2006

[5] IBM Developer Kit and Runtime Environment Java
2 Technology Edition, Version 5.0: Diagnostics Guide.
http://www-
128.ibm.com/developerworks/java/jdk/diagnosis/. Oct
2005.

[6] “java - the Java application launcher”
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/j
ava.html.

10/12/2006 Page 12 of 12

[7] Nigel Griffiths. “nmon performance: A free tool to
analyze AIX and Linux performance”. http://www-
128.ibm.com/developerworks/eserver/articles/analyze
_aix/. Nov 2003.

[8] “ethereal - Interactively dump and analyze network
traffic”. http://www.ethereal.com/docs/man-
pages/ethereal.1.html.

	CMG 2006 Main Menu
	Papers by Subject
	Papers by Author
	Acrobat® Help
	Search

