
Specification and Evaluation of Transparent Behavior
for SIP Back-to-Back User Agents

Gregory W. Bond
AT&T Labs—Research
Florham Park, NJ, USA

bond@research.att.com

Eric Cheung
AT&T Labs—Research
Florham Park, NJ, USA
cheung@research.att.com

Thomas M. Smith
AT&T Labs—Research
Florham Park, NJ, USA
tsmith@research.att.com

Pamela Zave
AT&T Labs—Research
Florham Park, NJ, USA
pamela@research.att.com

ABSTRACT
A back-to-back user agent (B2BUA) is a powerful mecha-
nism for realizing complex SIP applications. The ability to
create, terminate, and modify SIP dialogs allows the cre-
ation of arbitrarily complex services. However, B2BUAs
must be designed with care so as not to disrupt service in-
teroperability. A commonly-stated goal is for B2BUAs to be
as transparent as possible while achieving its design goals.
Though the notion of transparency is intuitively appealing,
it is difficult to define. To address this issue, this paper
proposes a definition of transparency and presents a formal
model of a transparent B2BUA to serve as the specification
of transparency. From this specification, we identify issues
with both the realizability and desirability of this behavior,
and suggest modifications to the original model. We evalu-
ate the behavior of a number of public B2BUA implementa-
tions via testing, using some novel techniques to create test
cases based on the formal models.

1. INTRODUCTION
A back-to-back user agent (B2BUA) is a powerful mecha-

nism for realizing complex SIP applications. The ability to
create, terminate, and modify SIP dialogs allows the cre-
ation of arbitrarily complex services. However, B2BUAs
must be designed with care so as not to disrupt service in-
teroperability.

A commonly-stated goal is for B2BUAs to be as transpar-
ent as possible while achieving its design goals. However,
the notion of transparency is not defined by the SIP speci-
fication [13]. This specification defines a back-to-back user
agent as “a logical entity that receives a request and pro-
cesses it as a user agent server (UAS). In order to determine
how the request should be answered, it acts as a user agent
client (UAC) and generates requests.” The specification fur-
ther states that “Since it is a concatenation of a UAC and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPTComm 2010, 2-3 August, 2010 Munich, Germany
Copyright 2010 ACM ...$10.00.

UAS, no explicit definitions are needed for its behavior.”
To date, the behavior of B2BUAs has not been specified,

other than that it must comply with the behavior of a UA
on each side. This leads to the perception that B2BUAs
break transparency of the network, and therefore hinders
innovation at the endpoints. On the other hand, a large
number of use cases have arisen in real-world deployments
of SIP services that require B2BUAs. For example:

• Hide network topology information. This is often per-
formed by Session Border Controllers (SBCs) that in-
terface the networks of two service providers.

• Terminate an existing session, for example by a pre-
paid application when calling credit has run out, or by
an IMS P-CSCF when it detects that the radio linkage
with the mobile device has been disconnected.

• Modify the Session Description Protocol (SDP) infor-
mation in the message body, for example to work through
firewalls.

• Perform third party call control by advanced applica-
tions, for example to change a direct two-party call to
a three-party call by bringing in a mixing media server.

The conflict between common usage and lack of specifi-
cation is untenable. It is important that the behavior of
B2BUAs is specified such that developers can implement
them correctly and service providers can test them for com-
pliance. At the same time, any innovations and extensions
to the SIP protocol can be designed to work with transpar-
ent B2BUAs as intermediaries. While a transparent B2BUA
does not provide any useful service, it can serve as the base-
line and various B2BUAs that provide services can be de-
fined as deviations from the transparent B2BUA. For ex-
ample, a prepaid application B2BUA is transparent except
when it terminates the session by sending BYE requests on
both SIP dialogs.

In 2007, the IETF SIPPING working group started to
work on a Best Current Practices document for a transpar-
ent B2BUA. Unfortunately, this work has not been contin-
ued to completion. The last draft [11] specifies how the
Allow, Required and Supported headers should be handled
when a request is received. It also specifies that when the

B2BUA relays a message certain headers should be gener-
ated, and the other headers and message body should be
copied.

The SIP Servlet API standard [1] provides limited support
for B2BUAs by providing methods for creating an outgoing
request to be sent out on the UAC side based on an incoming
request received on the UAS side. It specifies that the imple-
mentation must copy the headers from the incoming request
to the outgoing request (with a few exceptions). However,
the SIP Servlet API standard does not further specify any
transparent B2BUA behavior.

The purpose of this paper is to provide a firmer foundation
for B2BUAs in SIP by providing a rigorous and pragmatic
specification of transparent behavior. This entails a number
of contributions.

First, we show that it is difficult to define what ”trans-
parency” means, even on an informal and intuitive basis.
After examining the alternatives, we settle on a pragmatic
working definition (Section 2).

Second, we formalize our informal definition (Section 3).
Message sequencing is formalized in terms of an executable
model in Promela, the language of the Spin model checker.
Message contents are described in terms of header values.
To provide an environment in which the B2BUA model can
be analyzed and verified automatically, we also developed
new formal models of SIP user agents. Because of the use of
model checking, all of the Promela models are guaranteed
to be complete, consistent, unambiguous, and correct with
respect to well-defined criteria.

Third, we demonstrate the pragmatic use of our specifi-
cation by evaluating existing B2BUA implementations (Sec-
tion 4). Because manually generated tests are not sufficient,
we generated a suite of 2,408 tests automatically from the
formal UA models. We then ran both manually and auto-
matically generated tests, using automated testing tools, on
the available implementations. None of the implementations
comply fully with the B2BUA specification. This shows that
implementing a correct B2BUA is difficult, and that com-
prehensive testing is necessary to ensure the correctness of
implementations.

Overall, this research shows that judicious use of specifi-
cation, analysis, and testing tools can greatly improve the
quality of SIP components and SIP-based applications. Al-
though our research needs to be extended in various ways,
further work is amply justified by the initial results.

2. DEFINITION OF TRANSPARENT
BEHAVIOR

What does it mean for a B2BUA to behave transparently?
Transparency is an appealingly intuitive concept, but it is
not easy to give it a rigorous definition.

In general, there are two approaches to definition. An
operational definition of transparency would focus on the
behavior of the B2BUA itself. An observational definition
would define transparent behavior of a B2BUA as observed
by its environment, which consists of the UAs at the far
ends of its two dialogs. The advantage of an operational
definition is that it is easy to tell whether a specific B2BUA
satisfies the definition. One advantage of an observational
definition is that it corresponds most closely to the intuitive
notion of transparency. Another advantage is that it allows
the most freedom in implementing B2BUAs.

In this paper, pure propagation refers to the following be-
havior of a B2BUA: receive a message in one dialog, and send
it unchanged in the other dialog. A possible operational def-
inition is, “A transparent B2BUA applies pure propagation
to each received message, and does not send any messages
that are not propagated.”

Pure propagation cannot be correct transparent behav-
ior because a B2BUA must change propagated messages in
straightforward ways, such as modifying the Call-ID header
and tag parameters to match the unique identifiers of each
dialog. These changes to message content are specified in
Section 3.2.

In this paper, propagation as a B2BUA behavior is the
same as pure propagation, except with necessary header
changes. A revised operational definition is, “A transpar-
ent B2BUA applies propagation to each received message,
and does not send any messages that are not propagated.”
This definition does not work either, because it sometimes
violates the SIP standard in the individual dialogs. Sec-
tion 3.1.3 describes these situations.

Unfortunately, a rigorous observational definition is even
harder to find than an operational definition. It could re-
quire that the presence of the B2BUA be undetectable by
the far endpoints, but that is not achievable, even when
real-time delays and header changes are excepted (see Sec-
tion 3.1.3).

An observational definition should require that the me-
dia sessions between the far endpoints be the same whether
there is a B2BUA present or not, because controlling media
sessions is the primary purpose of SIP. To formalize this suc-
cessfully, it would be necessary to define “the same” so that
it generalizes over the nondeterministic behavior of the net-
work between the far endpoints, which can affect endpoint
behavior and media sessions even when there is no B2BUA.
Also, a definition of transparency based on media sessions
would be necessary but not sufficient—SIP signaling accom-
plishes more than just controlling media sessions.

In this paper we use a pragmatic definition of transparency
that lies somewhere between the two extremes. A B2BUA
is transparent if and only if:

• It acts as a standards-compliant UA in both dialogs.

• Its behavior within the two SIP dialogs is to propa-
gate each message, and to not send any messages that
are not propagated, except when this behavior would
violate the protocol in either dialog.

• When its behavior is an exception to the basic rule, its
behavior minimizes the effect of its presence between
the far endpoint UAs.

The first two points are operational and precise. The third
point is observational and rather vague.

We feel that this definition, despite its flaws, has enabled
us to make progress toward understanding transparency. We
regard it as an interim result, to be replaced in the future
by a more precise observational definition.

3. SPECIFICATION OF TRANSPARENT
BEHAVIOR

Our study covers the basic version of SIP defined in RFC
3261 [13], plus info [3] requests. Info requests allow application-
level mid-call signaling without affecting dialog state, and

are used extensively for PSTN–SIP interworking and media
server control.

3.1 Message Sequencing

3.1.1 Method of Study
Message sequencing is an aspect of behavior. It is con-

cerned with when a user agent can or must send a message,
and what messages a user agent might receive at any given
time. We study message sequencing by means of formal
modeling and analysis.

In the sequencing view a message is identified primarily by
a type, which is a member of an enumerated set. The request
types within our scope are invite, ack, cancel, info, and bye.
The possible responses to these requests are categorized in
an enumerated set according to the level of detail needed.
For example, the possible responses to an info request are
categorized as infoDVR or infoRsp.

The infoDVR category consists of 408 (Request Timeout)
and 481 (Call/Transaction Does Not Exist) messages in re-
sponse to an info. The name stands for Dialog Vanished
Response, because both of these indicate that the dialog is
gone. The infoRsp category consists of all other responses,
whether successful (200) or failing (3xx-6xx). In the models,
there is a need to distinguish between DVR responses and
all other responses, because they are handled differently by
the models. There is no need to distinguish between suc-
cessful responses and other failing responses, because (from
the perspective of our models, see Section 3.1.2) they are
simply passed to the user.

Secondarily, messages that can carry SDP are categorized
as carrying offer, answer, or none in their SDP fields. All
other aspects of message content are discussed in Section 3.2,
and are not included in the sequencing models.

In a previous study [18], we used formal modeling in the
Promela language and verification with the Spin model checker
[7] to investigate invite dialogs in SIP. We wrote nondeter-
ministic models documenting all possible behaviors of the
two user agents (caller UA and callee UA) during an invite
dialog. To validate the models with respect to the RFCs,
we included pointers to those documents. We used a suite
of formal analysis and verification techniques to ensure that
the models were complete and consistent according to spe-
cific definitions of those terms. We also wrote a large number
of in-line assertions expressing our assumptions and under-
standing of the protocol, and verified automatically that the
model was correct according to those assertions. These val-
idation and verification techniques are described in detail in
[18].

Our study of B2BUAs builds on this previous work. First,
we improved our UA models in various ways. The endpoint
UAs are the environment of a B2BUA, so they must be
understood as well as possible. Most importantly, we added
UA failures as manifested by 408 and 481 messages.

The new models are described in Section 3.1.2, and are
available on the Web [5]. Some readers may be surprised
at their complexity—the original intent was for SIP to be a
“simple” protocol, but simplicity is long gone, even for the
basic version studied here. The important point is that,
faced with this unavoidable complexity, we must take ad-
vantage of available technology such as model checking to
help us deal with it.

Our specification of transparent behavior of a B2BUA also

takes the form of a Promela model. Unlike the UA models,
it is a deterministic program, prescribing exactly what the
B2BUA should do in each circumstance. It has been sub-
jected to all the same analysis and verification activities as
the UA models. This means that it is guaranteed to be com-
plete, consistent, and unambiguous. It is also guaranteed to
preserve a large number of correctness assertions evaluated
at control points within the UA and B2BUA code.

The B2BUA model (in two versions) is described in Sec-
tions 3.1.3 and 3.1.4, and is available on the Web [5].

3.1.2 The User-Agent Models
We assume that message delivery is reliable and FIFO in

each direction, because without this assumption a number
of significant new problems arise [18].

The UA models are more complete with respect to RFC
3261 than our previous models. They include early media,
408 and 481 messages, and timeouts in the callee UA wait-
ing for an ack to a successful initial invite. In the modeled
behavior, failure of one UA is detected when the failed UA
does not respond to a request from the live UA. Simultane-
ous failure of both UAs is not represented, however.

Because our primary goal is to help people program B2BUAs,
SIP is modeled from the viewpoint of the transaction user in
RFC 3261. According to RFC 3261, 100 (Trying) messages,
retransmissions, and acknowledgments after invite failures
are all handled exclusively by a lower-level transaction layer
of the protocol stack. This means that they need not be
present in our models.

As mentioned previously, the UA models are highly non-
deterministic. There are four major causes of nondetermin-
ism. First, nondeterminism can reflect user choice. For ex-
ample, after sending an initial invite, a caller UA can choose
to send a cancel message or wait for the response to the in-
vite. Second, nondeterminism can represent the possibility
of failure. Whenever a UA is due to respond to a request,
the UA model can send the request or else fail. Third, non-
determinism can reflect concurrency. The two UAs and mes-
sage channels between them are distributed and largely in-
dependent, so their events can be interleaved in arbitrary
ways. Fourth, nondeterminism can reflect implementation
freedom. For example, on receiving a cancel message when
it has not yet responded to the initial invite, a callee UA
must send both a 200 response to the cancel and a failure
response to the invite. The order is not specified, however,
so the model has a nondeterministic choice between the two
orders.

We have made every effort to read RFC 3261 closely and
interpret it correctly, but this is difficult to do because the
RFC is informal, incomplete, and vague in many places. Our
formal models have precise semantics and are guaranteed to
be complete; they are organized so that a specific answer
to a specific question is always easy to find. With the help
of the SIP community they can be improved until they are
declared correct by consensus, at which time they can serve
as valuable appendices to the RFCs.

In the remainder of this section we discuss some specific
aspects of UA behavior that are important for B2BUA be-
havior.

During a confirmed dialog, either UA can send an invite
message to alter the session description (specification of the
media channels). Because there is only supposed to be one
such re-invite transaction at a time, a re-invite race occurs

if both UAs re-invite at about the same time.
A typical re-invite race is shown in Figure 1. Each UA

knows there is a race as soon as it receives invite after send-
ing invite. Each UA responds with inv491 (a 491 message
in response to an invite), so that both re-invite requests fail.
Although each UA is free to try again at a later (and differ-
ent) time, our models do not show any relationship between
the earlier and later re-invites.

invite invite

inv491 inv491

Caller UA Callee UA

Figure 1: A re-invite race.

On receiving any invite (initial or re-invite) message, a
UA need not respond immediately. This provides time for
the UA to get instructions from a human user if necessary.
In the models, a UA receiving an invite goes into an invited
or reInvited state. In these states the UA can send or receive
other messages. At any time, however, it has the choice to
send a final response to the invite.

An invite transaction can take two forms with respect to
the offer/answer exchange [12]. These two forms are illus-
trated in Figure 2 by re-invites from the callee UA. On the
left, the invite message carries an offer and the inv200 carries
an answer. On the right, the invite message does not carry
an offer, but rather solicits an offer from the other UA. In
this form the inv200 carries the offer, and the ack message
carries the answer.

On the left, the caller UA leaves the reInvited state after
sending inv200, even though it has not yet received the ack.
Because the offer/answer exchange is complete, even before
receiving the ack it can send a new invite message to begin
a new re-invite transaction [12].

Any time after sending the initial invite and before re-
ceiving a final response to it, a caller UA can send cancel to
cancel the transaction and abort the dialog. A cancel race
occurs if the cancel message arrives at the callee UA after
the callee UA has sent a final, successful response to the
invite.

A typical cancel race is shown in Figure 3. The caller
UA knows there is a race as soon as it receives inv200 (a
200 message in response to an invite) after sending cancel.
Having failed to cancel the initial transaction, it ends the
dialog by sending a bye instead. Later it receives canc200
sent by the callee UA.

For all requests, a DVR response in the model corresponds
to either a 408 or 481 response. In the models, a failing
UA sends a DVR response and then enters a state in which
it no longer communicates except to send additional DVR
responses.

This modeled behavior corresponds quite closely to the
actual behavior of a UA that fails and restarts, having lost
dialog state. The restarted UA will respond to all subse-
quent requests for that dialog with 481 messages.

The modeled behavior corresponds more loosely to the

cancel

invite

inv200

ack

bye

bye200

Caller UA Callee UA

canc200

Figure 3: A cancel race.

actual behavior of a UA that fails and does not restart. In
this case, obviously, the dead UA does not send any mes-
sages. Rather, the transaction layer of the live UA generates
a 408 response for the transaction user to see. Thus a UA’s
sending 408 messages at and after failure is a modeling trick
ensuring that one UA gets 408 responses when and only
when the other UA has failed.

On receiving a DVR response, a UA that has not already
sent a bye is supposed to send a bye. This causes two dif-
ficulties in the callee UA. First, the callee UA can receive
a 408 or 481 response to an info message when it is still in
the invited state and cannot legally send a bye. In this case
we have the callee UA send a failure response to the initial
invite.

Second, the callee UA can receive these responses to info
requests when it has already sent an inv200 for the initial
invite but has not yet received the corresponding ack. It
cannot legally send a bye in this case, either. It becomes
blocked until it receives an ack or ack timeout, at which
time it sends the bye.

Modeling reveals that a queue of messages in transit from
one UA to the other can grow to size 7 (even though the
model allows only one provisional response and only one
outstanding info request). In this unusual scenario, one UA
generates the message sequence inv200, invite, info, bye and
then is suspended for a long interval. During this interval
the other UA receives the 4 messages and processes them to
generate the following sequence: ack, inv200, infoRsp, info,
invite, bye, bye200. Of these 7 messages, 4 are responses to
the 4 queued messages, and 3 are new requests.

3.1.3 The Back-to-Back User Agent Model
Our model of a back-to-back user agent is a deterministic

Promela program that acts as a callee UA in one dialog and
a caller UA in another. It is proposed as a specification of
correct transparent behavior.

Whenever possible, the transparent B2BUA reacts to re-
ceiving a message from one dialog simply by propagating
it. The remainder of this section discusses the situations in
which this is not possible, and how the B2BUA can deal
with the situation safely.

A typical re-invite race is shown in Figure 4. When the
B2BUA receives an invite from the right, it cannot forward

reInvited

confirmedconfirmed confirmed confirmed

reInviting

confirmed

confirmed

reInviting

confirmed
confirmed

ack, answer

inv200, offer

invite, noneinvite, offer

ack, none

reInvited

inv200, answer

Caller UA Callee UA Caller UA Callee UA

Figure 2: Two ways the callee UA can re-invite, with local states of the UAs shown. These transactions can
also be initiated symmetrically by the caller UA.

it to the left, because it would violate the SIP protocol in
the leftmost dialog by knowingly creating a re-invite race.
Because it knows that there is a race, it generates an inv491
response instead. After that point it can resume propagation
of messages.

As a result of the presence of the B2BUA, the endpoint
caller UA on the left receives inv491 without having received
a racing invite—something that could never happen in a
simple dialog. This illustrates the point that “transparent
behavior” cannot be defined as “undetectable behavior.”

In Figure 4 the B2BUA absorbs a request (rather than
propagating it) and generates its own response to the re-
quest. This deviation is benign for two reasons: (1) if the
B2BUA had propagated the request, the request would not
have changed the state of the UA that received it; and (2)
both endpoint UAs receive the same responses to their re-
quests as they would have received without the B2BUA.

A B2BUA can never simply propagate cancel requests,
because cancel requests are “hop-by-hop”. On receiving a
cancel from the left, a B2BUA must immediately generate
a response in the leftmost dialog. If the B2BUA also sends
a cancel to the right and receives a response from the right,
then the B2BUA must absorb the response. This behavior
is shown in Figure 5.

In one form of cancel race, cancel and inv200 messages
cross in the left dialog. This means that the B2BUA re-
ceives the cancel after it has already propagated inv200 to
the left, so that the dialog on the left of the B2BUA looks
like Figure 3. There is no point to propagating cancel to the
right, and it would also be illegal to do so because the dialog
to the right has been confirmed. The B2BUA must simply
absorb the cancel and generate canc200 as a response.

Cancel races detected on the right of the B2BUA do not
require a transparent B2BUA to behave differently than in
Figure 5. If the cancel arrives at the callee UA too late, then
the calle UA may have already sent inv200. As with invFail
in Figure 5, the B2BUA simply propagates inv200.

The B2BUA can receive a request (for example a re-invite)
from a dialog after it has received a bye from the other dia-
log and propagated it to the requesting dialog, as shown in
Figure 6. If the B2BUA were to propagate the new request
(in Figure 6, to the right), it would be sending a new request

in a dialog that has already seen a bye. In our opinion this
is clearly wrong and should be illegal, although we cannot
find a specific prohibition in RFC 3261. Instead of propa-
gating the invite, the B2BUA should absorb it and generate
invFail. If the B2BUA had propagated the invite, it would
have had no effect on the state of the callee UA.

B2BUA bye
byeinvite

invFail

Caller UA Callee UA

Figure 6: A late request arrives at a B2BUA.

Similarly, the B2BUA cannot propagate a provisional re-
sponse by sending it in a dialog that has already seen a
bye. In this case the B2BUA absorbs the message without
generating any other message.

3.1.4 A Modified B2BUA
The pure B2BUA described in Section 3.1.3 propagates

messages whenever propagation is legal. Unfortunately, it is
a specification that cannot be implemented in a SIP Servlet
container. The reason is that the SIP Servlet standard [1]
mandates handling cancel requests in a different and less
transparent way.

Because of the importance of the SIP Servlet containers
as platforms for SIP applications, we provide a modified
model to serve as an alternative specification of a transpar-
ent B2BUA. The modified specification is compatible with
the SIP Servlet standard.

Figure 7 shows how the modified B2BUA handles a cancel.
Provided that the cancel is not too late in arriving at the
B2BUA (see Figure 3), the B2BUA immediately generates
invFail to the left, ending that dialog. It also sends the
cancel to the right.

In the scenario shown in Figure 7, there is a cancel race
on the right, so that the B2BUA receives inv200 from the
right and generates bye to the right. If there were no race,
it would receive invFail from the right and simply absorb it.

B2BUA
invite

inv491

invite

inv491

invite

inv491

Caller UA Callee UA

Figure 4: A re-invite race in the presence of a B2BUA.

B2BUA

canc200

cancel

invite

invite

cancel

canc200

invFail

invFail

Caller UA Callee UA

Figure 5: Canceling in the presence of a B2BUA.

When the modified B2BUA generates invFail, it creates
a situation in which its two dialogs are in different and in-
compatible states. From that point on, there is no message
propagation, and the B2BUA handles the two dialogs sepa-
rately.

Although the modified B2BUA does not satisfy our in-
terim definition of transparency, it has other advantages,
such as responding faster overall to a cancel request. This
points to a potential benefit of finding a better definition of
transparency. If the definition were more observational, it
would allow more freedom in the implementation of B2BUAs.
This would give application and platform developers the
room to design better B2BUAs, with improved efficiency
and possibly other desirable properties.

3.2 Message Content
In order to achieve transparency, the message content, as

well as sequence, must be preserved. Message content in-
cludes the headers of a SIP message as well as the body.
A minimal number of headers are mandated by RFC 3261;
other headers are specified in a variety of RFCs. Finally, it
is always possible for a SIP UA to include so-called private
or extension headers. Message bodies convey information
in a wide variety of contexts, for example, descriptions of
media connectivity, conveyed via SDP; carriage of instant
messages (IMs); or carriage of commands and associated re-
sponses between a UA and a media server.

As discussed in Section 1, [11] begins to address the is-
sues of transparency with respect to message contents. The

recommendations in this section generally accord with that
document; however that document also discusses issues that
are outside the scope of this paper.

For correct propagation of the message, the body must be
copied from the incoming message to the outgoing message.
Furthermore, with the exceptions noted below, all headers
in the incoming message should be copied to the outgoing
message.

Part or all of three headers are used to provide a unique
dialog identifier: the value of the Call-ID header along with
the values of the tag parameter of the From and To headers.
Due to requirements for global uniqueness, these values can-
not be re-used in a new dialog; the B2BUA must generate
its own unique values.

The Via and Contact headers are used for hop-by-hop
message routing, and thus should not be copied. Similarly, if
the topmost Route header in an incoming request targets the
B2BUA, it should not be copied. The Record-Route header
applies to a dialog; since the B2BUA terminates two dialogs,
it is responsible for adhering to any routing requirements of
this header in the two dialogs, but the header should not be
copied between dialogs.

The B2BUA must inspect Allow, Supported, and Re-

quired headers and modify them accordingly to reflect the
capabilities of the B2BUA. The Max-Forwards header is used
to detect routing loops. If the value of the header in an in-
coming request is greater than 0, the B2BUA should decre-
ment the value of the header by 1 for the propagated request;
otherwise the B2BUA should reject the request.

B2BUA

canc200

cancel

invite

invite

invFail

cancel
inv200

ack

bye

bye200

Caller UA Callee UA

canc200

Figure 7: A cancel race in the presence of a modified B2BUA.

4. EVALUATION OF IMPLEMENTATIONS
After we completed the specification of the correct behav-

ior of a transparent B2BUA and wrote a Promela program
to formally model the behavior, we undertook the task of
testing existing B2BUA implementations to evaluate if they
comply with the specification.

4.1 Systems Under Test
Our evaluation is restricted to implementations that (1)

are built on the SIP Servlet API, because it is the domi-
nant standard for SIP application development; and (2) have
source code freely available for inspection and use, so that
users of these implementations may make use of these re-
sults to make any necessary correction to the source code if
desired.

The SIP Servlet API provides limited support for B2BUA
applications in the form of the B2buaHelper class with sev-
eral convenience methods. A B2BUA application can use
this class to manage linkage of its two dialogs. As well, upon
receiving a request on the first dialog, the application can
call one of the convenience methods to create an outgoing
request on the second dialog. The SIP Servlet container is
responsible for modifying and copying various headers cor-
rectly. The SIP Servlet container also handles certain re-
quests on behalf of the application, for example the cancel
request. Therefore, a B2BUA implemented using the SIP
Servlet API relies on both correct application programming
and correct container behavior.

The B2BUA implementations we evaluated are listed be-
low:

B2bTerminator (BT) This is a complete example appli-
cation to illustrate the use of B2buaHelper given in
[2]. This application behaves transparently except it
tears down the call after a certain time. We test this
application as a transparent B2BUA by setting a very
large timeout value.1

ECharts for SIP Servlets (E4SS) E4SS is an open source
framework that allows the use of the finite state ma-
chine paradigm to program SIP servlets at a higher

1This code change, together with changes necessary for BT
to run on OCCAS, is available at [5].

level of abstraction [16]. It also includes reusable fea-
tures, amongst them a transparent B2BUA application
called B2buaSafe. The version tested is SVN version
1578.

SailFin Converged Application Framework (CAFE)
This is another open source framework that provides a
higher level of programming abstraction for SIP appli-
cations [15]. By default, a CAFE application acts as
a transparent B2BUA. The programmer can override
the transparent behavior at different events to imple-
ment the specific logic of the application. The version
tested is sailfin-cafe-v1-b24.

The containers we evaluated are SailFin [14] version sailfin-
v2-b31g and Oracle Communication Converged Application
Server (OCCAS) version 4.0. BT and E4SS can be deployed
and tested on both containers. CAFE currently only sup-
ports the SailFin container and thus is not tested on OC-
CAS. Thus in total there are five systems under test (SUTs):
BT/SailFin, BT/OCCAS, E4SS/SailFin, E4SS/OCCAS, and
CAFE/SailFin.

4.2 Manual Test Generation
We first utilized KitCAT [17] to test the above B2BUA

implementations. KitCAT is a test tool for performing func-
tional testing of converged (SIP and HTTP) applications.
For this testing, KitCAT acts as both the caller and callee
user agents. Drawing on experience at the SIP Interoperabil-
ity Test events and call flow documents [9, 6], we wrote 12
test cases including race conditions where the two endpoints
send messages at the same time (e.g. cancel and inv200, bye
and bye). The test cases include assertions to check that the
SUT sends the correct messages and that the message head-
ers and contents are passed correctly according to Sections
3.1 and 3.2 respectively. The test results are discussed in
Section 4.4.1.

However, writing these KitCAT test programs manually
proved to be time-consuming. Moreover, KitCAT imposes a
call state machine on its test agents which precludes the gen-
eration of certain scenarios such as the re-invite race shown
in Figure 1. We concluded that we require a lower level
test tool for this kind of protocol testing, and also automat-
ically generated tests for better coverage. This approach is

discussed in the following section.

4.3 Model-Based Test Generation
Given the complexity of the SIP protocol, and the possible

interactions that may occur between agents and a B2BUA,
one might infer that the universe of possible behaviors is very
large indeed. Verification confirms this: the Spin model-
checker discovers 48,966,575 unique states for our combined
agent-B2BUA model. In the context of testing, this immense
state space indicates that a hand-crafted test suite of 10, 20,
or even 100 tests cannot possibly provide adequate coverage.
The testing challenge then is to improve upon what can
achieved by hand-crafting a test suite.

The approach we’ve chosen is to generate tests using the
same model we use for verification. One advantage of this
approach is that generated tests are guaranteed to conform
to behaviors specified by the model. Another advantage is
that it is possible, in principle, to generate a test suite that
satisfies a notion of complete coverage. However, as we have
seen, the tremendous size of the state space makes this latter
goal impractical for any obvious notion of completeness. For
this reason we’ve identified a series of test criteria that allow
us to intuitively partition the universe of possible tests into
practically sized test suites. For each test we identify:

• the length: the total number of messages sent or re-
ceived by the user agents – the greater the number
of messages sent, the more complex the interaction is
between agents;

• the maximum queue size: the maximum number of
messages that are enqueued at any time on the agent
and B2BUA queues – more enqueued messages corre-
sponds to greater channel latency or scarcity of pro-
cessing resources

• the “weather profile” which is determined by the mes-
sages present in the test:

– a “sunny day” test excludes invFail, cancel, DVR,
and ackTimeout messages;

– a“cloudy day”test includes at least one invFail or
cancel message but no DVR or ackTimeout mes-
sages;

– a “stormy day” test includes at least one DVR or
ackTimeout message.

We can now identify tests that meet a particular criteria,
for example: “all” sunny day tests with queue size 1 and
length less than or equal to 12 (the meaning of the “all”
will be qualified shortly). This test suite would correspond
to moderately complex but normal behavioral interaction
between agents via a B2BUA.

We use a two phase approach to automatically generate
tests as shown in Figure 8. The first phase generates “test
traces” from the model. A test trace is a high-level symbolic
representation of a sequence of messages sent or received by
the user agents via the B2BUA. The second phase trans-
lates a set of test traces to an executable test suite. Each
executable test ensures that messages are sent and received
in a timely fashion and in the expected order.

An example of a test trace is:

Figure 8: Two phase model-based test generation.

Figure 9: A model’s states and paths.

8
(caller)[out!invite,none]:(callee)[in?invite,sdp]:
(callee)[out!inv200,offer]:(caller)[in?inv200,sdp]:
(caller)[out!bye,none]:(callee)[in?bye,sdp]:
(callee)[out!bye200,none]:(caller)[in?bye200,sdp]:
1:1:1:ALL:1

where the first number indicates the test length, the final
five colon-delimited fields indicate the individual and over-
all maximum queue lengths for the agents and the B2BUA
(here “ALL” indicates that both agents and the B2BUA had
the same maximum queue size of 1) and the remaining colon-
delimited fields represent messages sent or received by the
agents. Thus, a test trace contains all the information re-
quired for selecting a test that meets the criteria described
in the previous section.

Since the Spin model checker parses our model and tra-
verses its state space to perform verification we chose to
harness this machinery in order to generate tests. However,
trace-based test generation involves recording the paths in-
terconnecting a model’s states but, being a model checker,
Spin endeavors only to visit all of a model’s states. Consid-
ering the example model shown in Figure 9, Spin would visit
states S1 through S5 of the model shown. However, utiliz-
ing its depth-first search algorithm, Spin would completely
traverse path P1 or P2 but it wouldn’t completely traverse
both. This is because state S4 is common to both paths so
the second path would be truncated when the depth first
algorithm arrives at state S4 a second time. To bridge the
divide between state and path traversal we augmented our
model and Spin’s verifier. The agent model is augmented
to maintain a record of messages sent and received by the
agents. This way, each reachable state of the augmented
model will include a record of the path traversed to reach
the state. Spin’s depth-first verifier algorithm is augmented
to output a complete path (a path from the initial state to
a valid end state) when it encounters one.

It was also necessary to refine the modified B2BUA model
presented in Section 3.1.4 in order to exclude tests that re-
flected unachievable container behavior. Containers nor-
mally serve requests in FIFO order but, using a B2BUA
model that dedicates a separate request queue to each agent,
tests were generated that required a container to serve one
agent’s requests while unfairly neglecting the other agent’s
requests. To eliminate this unfair behavior we replaced
the B2BUA’s two input queues with a single queue that
is shared by the two agents. This modification ensures that
the B2BUA serves requests in FIFO order the same way a
container does.

Spin supports limiting a search to a pre-defined depth,
where depth is defined in terms of the number of transitions
traversed between model states. We use this depth limiting
facility to limit the number of generated tests. For example,
for a depth limit of 71 we generate 361,737 unique tests
ranging from length 4 to 17, and overall maximum queue
size of 5. Generating a test set this way is memory and CPU
intensive. For example, generating the aforementioned tests
required 105 GB of preallocated RAM and 40 CPU minutes
of a single 2.40 GHz Intel Xeon processor core.

Given the enormous number of generated tests, one might
expect reasonable coverage of system behavior. To confirm
this intuition we inspected the tests for instances of example
call flows. We confirmed that there were many representa-
tive test cases corresponding to the hand-crafted test suite
described in Section 4.2. We also identified the four call flows
from the “Example Call Flows of Race Conditions” RFC [6]
that conform to the scope of our model and confirmed that
representative tests existed for each.

Although inspection of the generated tests cases reveals
excellent test coverage, inspection also reveals that the set
of generated tests is not complete for the specified depth
limit. For example, inspection of our tests reveals that not
all message interleavings are present for all call flows. We
assume that the underlying reason is that Spin’s verifica-
tion algorithm is not designed for traversing all paths of a
model, rather it is designed for traversing all states of the
model. Determining which particular aspect of the verifica-
tion algorithm is responsible for compromising completeness
is something we are currently investigating.

Figure 10 shows the test application architecture. The
test driver is responsible for administering the generated
tests and recording test results. We use the JUnit unit test
framework [10] for executing a test suite and reporting test
results. In addition to JUnit the tests also use the ECharts
for JAIN-SIP (E4JS) API for sending and receiving SIP mes-
sages. JAIN-SIP [8] provides a transaction-user API for SIP
and E4JS [4] is an abstraction layer on top of JAIN-SIP
that provides facilities for managing multiple agents, in our
case a caller and callee agent, sharing a SIP stack instance.
The system under test is a B2BUA SIP Servlet application
running in a SIP Servlet container.

4.4 Test Evaluation
The following presents the results of applying the manu-

ally and automatically generated tests to the systems under
test.

4.4.1 Results of Manually Generated Tests
Table 1 shows the results of using KitCAT and hand-

crafted test cases to test the five SUTs listed in Section 4.1.

Figure 10: The test application architecture.

The results reveal two problems related to message se-
quencing. First, when faced with the cancel race shown in
Figure 7, BT and CAFE do not send bye to terminate the
right dialog even though the left dialog has been terminated.

Second, in the scenario where callee receives re-invite,
sends inv200, but before receiving ack the callee sends bye,
all three SUTs on SailFin fail. This reveals a bug in the
SailFin implementation where it throws an exception if the
application attempts to send a mid-dialog request before re-
ceiving the ack request, even though this is allowed by [13].

In terms of message content transparency, BT and CAFE
rely on B2buaHelper class to create outgoing requests based
on incoming requests. OCCAS copies unknown extension
headers in this operation, but SailFin does not. However,
in forwarding responses the application must copy unknown
headers. E4SS uses its own code to copy headers from in-
coming to outgoing messages. However, this testing reveals
a bug in the E4SS implementation where headers in the ack
request are not copied.

4.4.2 Results of Automatically Generated Tests
We used only the OCCAS container for evaluating B2BUAs

with automatically generated tests. This is because of the
SailFin bug uncovered using manual testing described in
the previous section. Since we did not use SailFin then
we could not test CAFE. Thus in total there are two SUTs
for testing with automatically generated tests: BT/OCCAS,
E4SS/OCCAS. Table 2 shows the results of our testing.

Of the over 360,000 tests generated, we used the criteria
described in Section 4.3 to select a manageable test suite
of 2,408 tests: 257 sunny day, 1,335 cloudy day and 816
stormy day. We confirmed that these tests included the
scenarios covered by our manually generated tests. Fur-
thermore, we made sure that the cloudy day tests included
cancel/invite200 races, re-invite races, and common failure
scenarios. In general, we selected tests with a maximum
queue size of 1 except for cases that required queue sizes of
2, such as in some cancel scenarios where two response mes-
sages can be sent in a row by an agent. Using a small queue
size represents normal environmental conditions, with mini-
mal channel latency and minimal competition for processing
resources. Test length for cancel scenarios and stormy day
scenarios were limited to length 11 and 13, respectively.

The test results, shown in Table 2, reveal failures in both
the B2BUA applications and in the underlying OCCAS con-
tainer (container failures are indicated by a ∗ superscript).

For the cloudy day tests, neither SUT was capable of ne-
gotiating the complexities of certain re-invite races. Testing
also uncovered the same problem with BT that we uncov-
ered using manual testing, namely the inability to properly
handle a cancel/inv200 race. The E4SS B2BUA does not

SUT
Message Sequence

Message Content
Tests passed Failed cases

BT/OCCAS 11/12 cancel and inv200 race Partially fail: responses

BT/SailFin 10/12
cancel and inv200 race

Fail: requests, responses
Callee sends bye before receiving ack

E4SS/OCCAS 12/12 Partially fail: ack
E4SS/SailFin 11/12 Callee sends bye before receiving ack Partially fail: ack

CAFE/SailFin 10/12
cancel and inv200 race

Fail - requests, responses
Callee sends bye before receiving ack

Table 1: Results of Manually Generated Tests

Category
SUT

BT/OCCAS E4SS/OCCAS
Tests passed Failed cases Tests passed Failed cases

Sunny Day 257/257 257/257
Cloudy Day 830/1,335 56 re-invite race 888/1,335 56 re-invite race

98 cancel/inv200 race 40 outstanding requests after invFail
217 request after bye 217 request after bye
134 504s after dialog terminated∗ 134 504s after dialog terminated∗

Stormy Day 568/816 32 canc200 instead of cancDVR∗ 760/816 32 canc200 instead of cancDVR∗

196 cancel/inv200 race 5 outstanding requests after invFail
15 bye after DVR∗ 15 bye after DVR∗

5 create final response after DVR 4 bye after ackTimeout

Table 2: Results of Automatic Testing

propagate responses to outstanding requests after receving
an invFail. Both B2BUAs continue to propagate requests
after receiving a bye. Finally, the tests revealed an OCCAS
container bug, where the container sends 504 responses to
outstanding requests after a dialog has terminated.

For the stormy day tests we discovered that OCCAS pre-
vents sending a bye after receiving a DVR response, even
though sending a bye is specified by RFC 3261. As for the
cloudy day tests, E4SS failed to propagate responses to out-
standing requests after receiving an invFail and BT failed
to handle cancel/inv200 races. Another OCCAS container
problem is that it would sometimes send a canc200 instead
of the expected cancDVR in some DVR scenarios. BT fails
to propagate a message because one of BT’s SipSessions no
longer exists. It isn’t clear if this is due to a bug in BT, the
SIP Servlet specification or the OCCAS container. Finally,
E4SS failed to propagate bye messages after an ackTimeout
event.

4.4.3 Discussion of Results
Our testing, using both manually and automatically gen-

erated tests, reveals problems with every application and
container we looked at. From this we conclude that imple-
menting a correct B2BUA is difficult and, moreover, that
comprehensive testing is necessary to validate B2BUA be-
havior. Our results support efforts like SailFin CAFE and
E4SS whose goals include providing a reusable, correctly im-
plemented B2BUA that hides the inherent complexity from
the programmer. Furthermore, our results indicate that
comprehensive application-level testing supports validating
container behavior and reveals ambiguities in the SIP Servlet
specification. Finally, our results support our approach to
model-based test generation. Not only do our automatically

generated tests uncover the same B2BUA failures that our
hand-crafted tests do, but they also uncover new failures
resulting from unusual stormy day call flows.

5. DISCUSSION AND FUTURE WORK
SIP is becoming increasingly important as the dominant

protocol for IP-based telecommunications and multimedia
systems. The specification of SIP is informal and in some
places incomplete, inconsistent, or ambiguous. SIP is com-
plex already and its complexity is increasing, as the protocol
is extended for a variety of reasons.

This study and our previous work [18] show that this sit-
uation is both dangerous and unnecessary. With judicious
use of formal specification and automated analysis, the SIP
protocol can be documented in a way that is guaranteed
complete, consistent, unambiguous, and correct with respect
to a variety of assertions. Critical SIP components such as
B2BUAs can be defined with an equivalent level of quality.
These models can be exploited to generate large, comprehen-
sive test suites for real implementations. Given the number
of bugs and other problems that our work has uncovered, it
is safe to say that important goals such as interoperability
and reliability cannot be achieved without formal methods.

Important future work is to continue to extend the scope
of the model such that commonly used extensions to the SIP
protocol are included.

The B2BUA models presented here prescribe determinis-
tic behavior. However, in some cases, we made a choice from
multiple legal alternatives. For example, in the cancel race
of Figure 7, the B2BUA sends ack before bye, even though
it is legal to send the bye without sending a previous ack.
Further study is required in order to determine the criteria
used to resolve such ambiguous situations.

It is our intention to expand the scope of our testing to in-
clude tests with greater lengths and maximum queue sizes.
The machine we use for generating traces has 128 GB of
RAM which limits us to a Spin verification depth limit of
71. Using the current model this results in a maximum test
length of 17. By simplifying the model, for example, by con-
straining certain transition sequences to execute atomically,
we should be able to greatly reduce the state space with-
out compromising completeness, thereby permitting deeper
searches and generation of longer test traces.

Another challenge we faced was analyzing test results.
While our test platform unambigiously indicates how many
tests pass and how many fail, it does not provide any insight
into why tests fail. To do this we resorted to manually in-
specting failure signatures extracted from log files, their as-
sociated test cases and the associated application code. Nat-
urally, this becomes tedious and error-prone as the number
of failure cases increases. This process would benefit from
automated post-processing where similar failure signatures
could be grouped thereby reducing the number of failures
requiring investigation.

A goal of the SIP Servlet specification is to simplify life
for the application developer. To this end, a SIP Servlet
container presents an abstraction of the SIP stack to the
programmer. This abstraction intersects with that of a SIP
transaction-user but, in some cases, also presents a higher-
level abstraction. The problem, as revealed by our testing,
is that this abstraction is incompletely specified and has led
container vendors to make their own, independent imple-
mentation decisions without fully understanding their impli-
cations. The result is that the SIP Servlet standard, whose
goal is to support interoperability of applications across con-
tainers, does not achieve that goal. To address this situation,
a topic for future research is to formally specify SIP Servlet
container behavior and integrate the resulting model with
our B2BUA models.

6. ACKNOWLEDGMENTS
We gratefully acknowledge Kristoffer Gronowski for sup-

plying the BT example code, as well as the SailFin CAFE
team for their publicly-available B2BUA implementation.
Finally, we acknowledge, with gratitude and fondness, the
great contributions and lasting memories of our late col-
league Venkita Subramonian.

7. REFERENCES
[1] BEA. SIP Servlet API version 1.1, 2008. Java

Community Process JSR 289.
http://jcp.org/en/jsr/detail?id=289.

[2] C. Boulton and K. Gronowski. Understanding SIP
Servlets 1.1. Artech House, April 2009.

[3] S. Donovan. The SIP INFO method, October 2000.
IETF RFC 2976.

[4] ECharts for JAIN SIP (E4JS). http://echarts.org/.

[5] Formal models of SIP, 2010.
http://www.research.att.com/˜pamela/sip.html.

[6] M. Hasebe, J. Koshiko, Y. Suzuki, T. Yoshikawa, and
P. Kyzivat. Example call flows of race conditions in
the session initiation protocol (SIP). IETF RFC 5407,
December 2008.

[7] G. J. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2004.

[8] JAIN(tm) SIP Specification. Java Community Process,
2003. Available from: http://jcp.org/aboutJava/

communityprocess/final/jsr032/.

[9] A. Johnston, S. Donovan, R. Sparks, C. Cunningham,
and K. Summers. Session Initiation Protocol (SIP)
basic call flow examples. IETF RFC 3665, December
2003.

[10] JUnit. http://www.junit.org/.

[11] X. Marjou, I. Elz, and P. Musgrave. Best current
practices for a session initiation protocol (SIP)
transparent back-to-back user-agent (B2BUA). IETF
Internet-Draft draft-marjou-sipping-b2bua-01, July
2007.

[12] J. Rosenberg and H. Schulzrinne. An offer/answer
model with the session description protocol (SDP),
June 2002. IETF RFC 3264.

[13] J. Rosenberg, H. Schulzrinne, G. Camarillo,
A. Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session initiation protocol, June
2002. IETF RFC 3261.

[14] Project SailFin. https://sailfin.dev.java.net/.

[15] SailFin CAFE project.
https://sailfin-cafe.dev.java.net/.

[16] T. M. Smith and G. W. Bond. ECharts for SIP
Servlets: a state-machine programming environment
for VoIP applications. In IPTComm ’07: Proceedings
of the 1st International Conference on Principles,
Systems and Applications of IP telecommunications,
pages 89–98. ACM, 2007.

[17] V. Subramonian. Towards automated functional
testing of converged applications. In IPTComm ’09:
Proceedings of the 3rd International Conference on
Principles, Systems and Applications of IP
Telecommunications, pages 1–12, New York, NY,
USA, 2009. ACM.

[18] P. Zave. Understanding SIP through model-checking.
In Proceedings of the Second International Conference
on Principles, Systems and Applications of IP
Telecommunications, pages 256–279. Springer-Verlag
LNCS 5310, 2008.

