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Abstract— Due to the ongoing massive growth of the global
Internet, the rising integration of Voice over IP (VoIP)
services and the Fixed Mobile Convergence (FMC), the
IPv6 protocol and the Session Initiation Protocol (SIP)
are key technologies for the realization of next generation
communications.

For both topics, IPv6 and SIP, a lot of self-contained
research has been done. However, the challenge of SIP over
IPv6 as well as related issues and performance impacts
were not considered so far. In this article, we close this
gap and draw attention to theoretical and practical aspects
of the integration of SIP and IPv6, referred to as SIPv6. In
this context our special interest concerns the interworking
of heterogeneous IP networks during the transition from
IPv4 to IPv6 and their ramifications on the VoIP service.
Inevitably, during this period of co-existence the available
transition techniques have an impact on the network and
application performance. To quantify this impact, we set
up a SIPv6 VoIP testbed and measured the performance
penalties introduced by four selected transition techniques.
We characterize the performance of transition scenarios
compared to native scenarios by presenting measurement
results and gained insights. Our study reveals individual
pros and cons of transition technologies and their available
implementations.

Index Terms— IPv6, SIP, performance measurements, prox-
ying, tunneling, transition techniques, 6to4, Teredo

I. INTRODUCTION

More than one decade ago the Internet Engineering
Task Force (IETF) has started to develop a successor for
the most widely deployed network layer protocol in the
Internet: the Internet Protocol version 4 (IPv4).

IPv4 was originally developed in 1981 to solve the
(internet) routing matters for a small backbone connecting
academic and government networks within the United
States. Nowadays, the Internet is a worldwide backbone
interconnecting thousands of autonomous systems, how-
ever the network layer protocol is still IPv4.

As nobody could have foreseen this fulminant growth,
the developers of IPv4 decided generously to serve almost
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four billions of nodes, i.e., half of the today’s world
population. Nevertheless, for some years now the Internet
is on the verge of depletion of IPv4 addresses. Already
in 1992 the IETF identified this upcoming exhaustion
and started to specify countermeasures such as Network
Address Translation (NAT), Variable Length Subnet Mask
(VLSM), Classless Interdomain Routing (CIDR), and
Internet Protocol version 6 (IPv6). However, the only
sustainable solution to cope with IPv4 address space
shortage, which does not solely shift the point of depletion
is IPv6.

IPv6 was conceived within the IETF working group
IPng founded in 1994 with the goal to define the next
generation Internet Protocol. Among several proposed
alternatives, IPv6 [1] - originally called IPng - has been
selected as the successor of IPv4. Today, in a variety of
IPv6-related RFCs, complementary topics like security,
address and routing schemes, the IPv6 transition, and
mobility enhancements are treated.

In general, IPv6 offers some novelties and benefits but
still the most convincing argument for introduction is the
128-bit address space. The urgency for the introduction
of IPv6 becomes more and more obvious since well
known Internet engineers like Tony Hain (Cisco Inc.)
and Geoff Huston (APNIC) predict the point of depletion
between autumn 2008 [2] and summer 2012 [3]. In other
words, it is high time to continuously push the global
implementation of IPv6.

One of the still missing pieces in the IPv6 puzzle is
the evaluation of typical deployment issues such as per-
formance, interoperability, and scalability. In this context,
the main criteria at the beginning of IPv6 introduction
would be the seamless interworking between IPv4 and
IPv6, also considered as IPv6 transition. Apparently, the
migration from IPv4 to IPv6 could only happen in the
course of an incremental transition where both protocols
have to co-exist. The duration of this process is not
predictable, however it brings up a variety of additional
aspects, such as performance and scalability in particular
at the application layer.

These open questions motivated our IPv6 research on
the transition aspects of SIP (Session Initiation Proto-
col) [4], the protocol which is currently penetrating and
revolutionizing the Internet and its services landscape.
But not only the Internet, it is about to change the entire
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telecommunications industry since it has become accepted
as the signaling protocol-of-choice for services in the IP
Multimedia Subsystem (IMS).
SIP, also known as rendezvous protocol, was primarily de-
signed to signal multimedia-sessions. The most prominent
use case is Voice over IP (VoIP), but SIP goes far beyond
call initiation including services like location, presence
and messaging. The underlying reason for the success of
SIP is its simplicity, openness and versatility following
the basic concepts of the Internet.

IPv6 and SIP are key technologies for the realization of
the Next Generation Network (NGN). Motivated by this,
we performed extensive studies on the joint performance
aspects to draw conclusions for the implementation of
SIPv6. Our studies conducted in a dedicated SIPv6 testbed
include performance evaluation for different IPv6 and
SIP interworking scenarios with the focus on the VoIP-
signaling capability on SIP which is described within this
article as well.

This article is organized as follows. Section II briefly
considers the IPv6 transition aspects. The main character-
istics of SIP are reviewed in Section III. The requirements
for the IPv6 transition of the SIP service (SIPv6) and the
investigated strategies are presented in Section IV and
Section V, respectively. In section VI we describe the
design concept of our testbed architecture. Performance
results are discussed in Section VII. Section VIII con-
cludes the article.

II. IPV6

The introduction of IPv6 represents a challenge for
the entire Internet industry. Several years ago hardware
vendors have already started to equip their new appliances
with both IPv4 and IPv6 protocol stacks. Since 2007 even
the most popular operating systems are fully supporting
and strongly recommending the use of IPv6. The broad
support by the industry is mainly caused by the economic
growth of Asia and its push to the Internet as well as
the decision of DoD (Department of Defense, USA) in
summer 2003 to migrate the Pentagon’s network to IPv6
until 2008.

The emerging global trend towards IPv6 is lasting
observably, however deployment issues especially con-
cerning the required co-existence and interworking be-
tween IPv4 and IPv6 [5] hinders faster penetration. In
this context, the buzzword IPv6 transition describes the
incremental migration towards native IPv6. A time-frame
for this process is today not foreseeable.

IETF has specified a variety of IPv6 transition tech-
nologies in order to tackle various use case scenarios
in different transition stages. These technologies can be
grouped into three categories [6]:

(1) Dual-Stack - Each IP-aware network device is
equipped with a dual protocol stack, meaning
IPv4- and IPv6-enabled.

(2) Tunnelling - To cross native IPv4-domains IPv6
traffic is encapsulated in IPv4 packets. Tunnels

are established between two endpoints either man-
ually or automatically, depending on the chosen
method (e.g. 6to4, Teredo, or static tunnels).

(3) Translation - On the edge between an IPv4 and an
IPv6 domain one protocol must be translated into
the other and vice versa. For this interconnection
several approaches exist including direct transla-
tion (NAT-PT) or the termination of one IP-leg and
the new initiation in the other domain (proxying).

As long as the core Internet and most of the provider
networks remain native IPv4-enabled the only method
to interconnect two IPv6 nodes is to tunnel the traffic.
Nowadays, it is probably the most popular method to
interconnect IPv6 islands. Dual-stack networks enhance
flexibility and reachability, however the lack of IPv4-
address is still present as each node ideally should serve
both protocols. In corporate networks typically more than
ninety percent of the deployed network infrastructure is
already equipped with dual-stack capability. The use case
for translation is currently not given as there are almost
no networks or endpoints which only rely on native IPv6.
However, a scenario with IPv6-only nodes will probably
become real caused by the continuous growth of the In-
ternet. The number of mobile devices being permanently
connected to Internet has started to grow, but the space of
available IPv4-address will be soon exhausted. Of course,
there are several kludges deployed to shift the point of
depletion, but with the ongoing growth their management
will become increasingly complex. Once again the peer-
to-peer nature of the Internet is gaining more and more
attention - in particular from the service providers - and
this fact argues against the further use of intermediate
solutions which only provide an extended IPv4 space.

III. CHARACTERISTICS OF SIP

The Session Initiation Protocol (SIP) has been designed
to signal multimedia- and multiparty-services. Consider-
ing VoIP, SIP is basically used for the initiation, mod-
ification and termination of call sessions. In general, a
session is a virtual connection between two or more
endpoints used to transport real-time media. For that
purpose RTP (Real-time Transport Protocol) [7], the most
popular protocol for the media transportation is used.

The classical SIP architecture (as depicted in Figure 1),
also known as SIP trapezoid, includes the following
components:

User Agent (UA) - describes the logical function of
the terminal equipment. Depending on the role during
the session, active or passive, a UA acts either as client
(UAC) or server (UAS), respectively.

(Out-/Inbound) Proxy Server - routes SIP signaling
information (proxy server). It typically integrates also
the functionalities of Registrar and Redirect Server. The
registrar associates the current terminal representation
(IP-address) to the user’s AoR (Address-of-Record)
and stores this information in the location database.
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Figure 1. SIP trapezoid

Based on the registrar-function nomadicity for users, i.e.,
roaming can be provided. Functionally the redirect server
acts as UAS which informs the calling party that the
requested user is now reachable on the following SIP URI.

DNS (Domain Name Service) Server - maps domain
names into IP-addresses and provides information about
public domain-services. Relevant DNS-records for SIP
and IPv6 are NAPTR (Network Authority Pointer), SRV
(Service), A (IPv4 Address), and AAAA (IPv6 Address).

Location Server (LS) - keeps information about user
location as provided during the registration process, in a
database.

In order to understand SIP and its mode of operation
it is necessary to consider the basic concepts of dialogue,
transaction, and session.
The SIP dialogue uniquely identifies a temporary relation
between two endpoints established during call setup and
released after call completion. The term transaction is
taken from HTTP (Hyper Text Transfer Protocol) and
describes the common request/response process which can
be used either inside or outside of an established SIP
dialogue. Supplementary, the text-based coding as well
as the header structure shows also strong similarities to
HTTP. To conclude this part of definition, a session relates
to transported media and its corresponding parameters.
The setup of a media session happens synchronously with
the initiation of the controlling SIP dialogue.

The basic functionality of SIP is built up on six
methods (REGISTER, INVITE, ACK, BYE, OPTION,
and CANCEL) where each of them triggers a transaction.
In the course of a usual SIP call life cycle (shown in
Figure 2) four of the mentioned methods play a decisive
role. Once a user turns on her terminal equipment the user
agent must register with its serving proxy server. For this
purpose the method REGISTER is used to authenticate
the user agent and to announce that the user is ready to

receive calls. The public availability of a user is provided
by the proxy server which is the first point-of-contact
when accessing a SIP domain. During the registering
procedure the physical reachability (IP-address) is stored
in LS so that the proxy server is able to route calls to the
user’s terminal equipment.
If both caller and callee are registered, the method IN-
VITE can be used to setup a call. The required sequence
for a successful call establishment is INVITE - 200
OK - ACK. During this message exchange the media
session parameters including codec, IP-address, and port
number are negotiated as well. ACK is also one of the six
methods however it is a unidirectional request only used
for confirmation. Once ACK is received the call is set
up successfully and media is transported directly between
both involved user endpoints. Note that basically all SIP
messages coming after session negotiation can be sent
directly without passing the proxy servers. To enforce that
all signaling traffic traverse the participating proxy servers
the record route functionality of SIP can be applied. To
tear down a VoIP call a transaction is released by sending
the terminating BYE method. Further details about SIP
can be found in [4].

Information related to the call session (like media codec
or used RTP ports) is typically carried in the Session
Description Protocol (SDP) [8], in the SIP payload of
the session establishment message (INVITE) and the
subsequent acknowledgement (ACK).
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Figure 2. SIP message flow
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A. Performance Metrics

For the realization of meaningful performance measure-
ments different metrics can be considered such as CPU
utilization, data throughput, and time behavior. The focus
of our performance evaluation is the time behavior. To
quantify the signaling and media transport performance
we defined two characteristic values, Call Setup Time and
One-Way Delay, respectively (see Figure 2).

Call Setup Time (tcs) denotes the time between the
leaving INVITE message (caller’s side) and the arriving
ACK message (callee’s side). This interval is of partic-
ular importance, since it will create user annoyance and
dissatisfaction if it lasts too long.

One-Way Delay (td) represents the average time that
RTP packets require to cross the network from one
endpoint to the other, meaning the direct path between
UA1 and UA2.
In order to be able to conduct accurate time measure-
ments we have synchronized the testbed on a relativ time
base using Network Time Protocol (NTP). Based on this
step we are able to exploit the sent/received timestamps
captured with tcpdump/wireshark (www.wireshark.org).
During the test runs all hosts in the testbed are capturing
the entire network traffic on their Network Interface Cards
(NIC). Since all hosts in the testbed are time synchronized
the defined performance metrics, Call Setup Time (tcs)
and One-Way Delay (td) can be calculated by simply
subtracting the sent timevalue Tsent from the received
timevalue Treceived:

tcs = TACK,received − TINV,sent

td = TUA2,received − TUA1,sent

td = TUA1,received − TUA2,sent

For the correlation of measurements we had to unam-
biguously identify packets that belong together. Meaning,
a packet sent from UA1 has to be matched with the
corresponding packet received at UA2. This cannot be
done by comparing only the IP payload, since the content
of the packet might change in transit. In SIP, proxy
servers add or remove Via entries and decrement the Max-
Forwards value comparable to Time-To-Live (TTL) in IP.
Thus, we had to rely on specific SIP header values to
match corresponding packets. In case of SIP signaling
the headers Call-ID, To-tag, and From-tag are specified
to uniquely identify a SIP dialogue. We used Call-ID,
CSeq and SIP Method as these header fields provide
additional information for further processing. The Call-ID
field is a unique identifier that is randomly generated by
the user agent for each call. CSeq (Command Sequence)
header contains an integer number which is incremented
for each new transaction within a call and can be con-
sidered as traditional sequence number. The SIP method
denotes the purpose of a SIP transaction like INVITE
and REGISTER. For the identification of corresponding
RTP packets we used the unique Synchronization Source
Identifier (SSRC). Additionally, the ongoing Sequence
Number (SN) enables to individually detect each packet

of an ongoing stream.

IV. SIP AND IPV6 TRANSITION (SIPV6)

We introduced the notion of SIPv6 to refer to the
integration of SIP and IPv6, and to cover under this
term all important interworking aspects. In the following
discussion we point out the individual requirements
for the IPv6 transition of the SIP service related to
the network, signaling, and media layer [9], which we
identified as basis for our study:

Network layer: Considering the transition bottom up
the IPv6 reachability is one of the fundamental needs. In
other words, the SIP-enabled node must be provisioned
with IPv6 connectivity either native or by one of the
transition technologies. In the beginning the handling
of the heterogeneous SIP overlay network could be
facilitated by proxy servers with dual-stack capability.

Signaling layer: The aspects on this layer can be
classified in those related to (a) SIP signaling, and to (b)
DNS (Domain Name System) resolution.

(a) SIP signaling - As long as the caller and the
callee are using the same version of the Internet
Protocol the impact on the transition of SIP
signaling is negligible. However, once an IPv4
user wants to call an IPv6 user the introduction of
a translating instance becomes necessary. As SIP
and its companion for session negotiation, SDP
(Session Description Protocol) bear IP-addresses
within their header structure the usage of an
application-aware translator is required. To handle
this issue there are two possible approaches: NAT-
PT interworking with a SIP-ALG (Application
Layer Gateway), and SIP proxy server acting as
B2BUA (Back-To-Back User Agent).

(b) DNS resolution - The defined sequence for
locating a SIP proxy server includes querying
the DNS. At first the NAPTR-record is
requested if there is currently no transport
protocol (TCP/UDP/TLS) assigned. Based
on this information or a predefined transport
protocol the SRV-record is queried to obtain
the domain-serving proxy server. Concluding,
the corresponding A/AAAA-record provides the
mapping of the proxy server’s domain name to
its IP-address. To enable SIP in IPv6 the DNS
database has to be appropriately modified and
extended.

Media layer: The situation on the media layer is
similar to the one on the signaling layer, where the main
challenges emerge for the interworking in heterogeneous
scenarios - IPv4 calls IPv6 and vice versa. The media
channel is negotiated during SIP signaling contained in
the SDP payload. In the mentioned case of IPv4/IPv6 in-
terworking the application-aware translator is responsible
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to redirect the media channel to a translating interme-
diary. Such a node, often denoted as media gateway or
media relay, repacks media data, mostly transported with
UDP/RTP (Real-Time Transport Protocol), between two
networks with different versions of the Internet Protocol.
The translation process itself is straightforward if the
media intermediary gets the correct information about
which addresses and ports to use in IPv4 and in IPv6
from the application-aware translator. Furthermore, based
on the logical and physical separation of application layer
and media layer the balancing of workload among several
media gateways is recommended.

V. INVESTIGATED SIPV6 STRATEGIES

IPv6 is a mature and proven network protocol. It well
considers aspects like security, mobility, routing, and ad-
dressing. However, one of the major barriers for wide de-
ployment are the uncertainties concerning IPv6 transition
and the co-existence of two Internet Protocols. Although
the potential difficulties as well as the developed transition
techniques are commonly understood the application-
specific concerns still remain. For example, for real-
time applications no meaningful performance findings are
available. For this reason we decided to quantify the
ramifications on VoIP caused by the deployment of IPv6
transition techniques. As there exits a variety of developed
methods we selected a promising subset that covers each
of the transition categories in order to obtain comparable
results. This section introduces the deployed strategies
and their implementation as well as discusses individual
pros and cons.

1) Dual-Stack: Related to our performance evaluation
the dual-stack scenarios, i.e., native IPv4 and native
IPv6, provide the reference values to be compared with
the other scenarios.
From the implementation point of view almost all
off-the-shelf computers and operating systems support
dual-stack by default. This means that in turn we can
rely on hardware/software implementations which are
best suited to serve as reference values. To realize
SIP communication the involved dual-stack hosts were
provided with an IPv4 as well as an IPv6 address and
corresponding DNS entries (A-/AAAA-records).

2) Tunneling: The variety of tunneling solutions
ranges from manually to automatically configured tunnels
as well as tunnel brokers. For our performance study we
selected two tunneling mechanisms that have complemen-
tary features concering NAT traversal:

6to4 Tunneling [10] is probably the simplest and most
popular automatic tunneling mechanism to transport IPv6
packets over an IPv4 infrastructure. The discovery of
6to4 tunnel-endpoints is solved by integrating its IPv4
address within the 6to4 address (see Figure 3). If a host
in the IPv6 Internet is addressed then the IPv4 anycast-
address 192.88.99.0/24 is used to reach a public 6to4
relay router. A 6to4 address is identified by its unique
IPv6 prefix: 2002::/16. The IPv6 packet is embedded in

the IPv4 payload identified with the protocol-type 41.
Summed up, 6to4 is easy and convenient to use and it

Host IdentifierPrefix
2002::/16

Embedded IPv4 SubnetID

16 bits 32 bits 16 bits 64 bits

064128

Figure 3. Structure of an 6to4 address

provides a lot of benefits, however some issues require
special attention. Although the IPv4 anycast mechanism
performs well, up to several seconds can elapse till a
working 6to4 relay is found unless there are enough 6to4
relays deployed and they grant service to third parties.
Deploying automatic tunneling mechanisms raises always
the issue of asymmetric routing. This means that incoming
and outgoing packets can travel along different paths. As
a consequence, both one-way packet delay and routing
capability might strongly vary depending on the direction.
In addition, the capability for interdomain multicasting is
still absent.
All of the above mentioned flaws can be overcome with
appropriate countermeasures but 6to4 tunneling essen-
tially fails if Network Address Translation (NAT) is in
use. One exception exists, namely if the NAT device
additionally implements a 6to4 tunnel-endpoint, though it
is rarely used. Because of this inherent lack a fallback
solution which allows to serve customers behind NAT
devices needs to be implemented as well. The tunneling
technique named Teredo [11] is probably the most con-
vincing solution to cope with this issue, and is described
next.

Teredo Tunneling [11], originally developed by
Microsoft, is an automatic tunneling mechanism that
tackles the NAT issue. In other words, by deploying
Teredo the hosts which are located behind a device that
does network address translation, can still be reached
with IPv6. To solve the private numbering issue Teredo
introduces the following architecture which includes
Teredo client, Teredo server, and Teredo relay.
Teredo client is installed on a host that is placed behind
a NAT, has IPv4 Internet connectivity and intends to
contact an IPv6 node. Teredo server is a server publicly
available in the IPv4 Internet. It negotiates required
tunnel parameters with the Teredo client in order to
overcome the NAT barrier. Typically, it works statelessly
without consuming much bandwidth. Teredo relay
represents the gateway to the IPv6 Internet. This means
that a Teredo client sends its tunneled traffic to a Teredo
relay which unwraps and forwards it to the addressed
IPv6 node. The available bandwidth for the mentioned
forwarding service towards the IPv6 Internet is directly
proportional to the number of working Teredo relays.
The same statement is also valid for 6to4 relays.
For the purpose of NAT traversal the Teredo client
initially contacts a Teredo server to learn the deployed
NAT type as well as its public representation including
IP-address and port number. NAT implementations can
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be divided into the full-cone, restricted-cone, port-
restricted-cone, and symmetric type.
The protocol applied during the initial negotiation is a
simplified form of the STUN (Simple Traversal of User
Datagram Protocol (UDP) Trough Network Address
Translators (NATs)) protocol. Principally, this method
is based on the exchange of messages between private
and public realm to detect the mapping behavior and the
public representation. In case of a symmetric NAT even
STUN is doomed to fail. A remedy for this situation
provides the deployment of TURN (Traversal Using
Relay NAT). Further considerations are out of scope of
this article.
Regarding Teredo, as depicted in Figure 4, the IPv6
Teredo address includes the defined prefix 2001:0::/32,
the server’s and the client’s public IPv4-address, the
mapped port number, and flags indicating the present
NAT type. Teredo is a relatively complex protocol,

Public IPv4UDP PortTeredo Server IPv4 Flags

32 bits32 bits 16 bits

064128

Prefix 
2001:0::/32

32 bits 16 bits

Figure 4. Structure of a Teredo address

however the big advantage of this tunneling technique is
that it operates even if NATs are deployed. Still, there are
additional problems to be considered. First of all each
Teredo client requires a serving/dedicated Teredo server.
This need sounds not so difficult to satisfy, on the other
hand when configuring our testbed we figured out that it
is currently hard to find a working and globally available
Teredo server which is operated by a third party and
publicly accessible.
An inherent weakness of the Teredo server is that it
offers a single-point-of-failure as almost all traffic for
the initial communication to and from the Teredo client
has to traverse the same server.
During our performance measurements we also observed
the occurrence of route starvation along the path
between a native IPv6 host and a Teredo client. Route
starvation means that IPv6 packets destined for a Teredo
Client which uses the defined prefix 2001:0::/32 were
silently discarded caused by missing links in the routing
tables. Altough, based on announced routes and routing
decisions the nearest Teredo relay should be contacted
to deliver the tunneled IPv6 traffic, in our tests we have
traced that the routing process frequently fails. One
external router which discards our traffic seemed to be
misconfigured.
Before being discarded the packets are routed by a
number of routers which have no direct link to a router
that is able to serve 2001:0::/32 (Teredo relay) and
consequently use their default route. This fact leads to
the conclusion that Teredo tunneling is currently faced
with low penetration and deployment issues. In our case
we solved the problem by installing a static route towards
a Teredo relay operated by us. The experience showed

that Teredo requires a given infrastructure, ideally made
available by the Internet access provider, to guarantee a
working tunneling service.
Finally, we have to point out that Teredo compared
with 6to4 can serve only one host per negotiated Teredo
address. This is caused by the individual global mapping
of each host residing in the private network.
Our performance evaluation was conducted using the
default 6to4 implementation provided by the Linux kernel
as well as Miredo which is an open-source realization of
the Teredo protocol.

3) Proxying: The third strategy for IPv6 transition
deals with the translation, in particular with an approach
referred to as proxying [12]. From the SIP perspective
a plain straightforward translation on the network layer
is not sufficient. SIP signaling even bears IP-addresses
within the application layer headers which additionally
require an appropriate treatment. It is conceivable to
realize this task with the deployment of a stateful SIP
application layer gateway (SIP-ALG). This approach is
working following the find-and-replace principle to adapt
SIP headers, however without knowledge about SIP logic
and the corresponding state machine. The more preferable
strategy is to deploy a SIP proxy server (Proxy Gateway)
which acts as back-to-back user agent (B2BUA). Classi-
cally a B2BUA implements two UAs standing back-to-
back where each one is responsible for its call-leg. In
other words, a B2BUA crossing call is terminated on the
incoming interface of the first UA and re-originated on the
outgoing interface of the second UA. The required infor-
mation for the call management is passed between both
instances. By mapping this concept on IPv6 transition one
UA is responsible for IPv4 and the other one for IPv6.
In Figure 5 a typical proxying scenario is presented. The
SIP Gateway is a logical entity that integrates a Proxy
Gateway and a Media Gateway.
Similar to signaling, the media traffic transported in RTP
must also be translated at the boundary between IPv4 and
IPv6. For that purpose a so called media gateway or media
relay simply performs network layer translation. Between
Proxy Gateway and Media Gateway there is a communi-
cation channel, usually implemented as UDP socket with
a proprietary control protocol. As the Media Gateway is
basically signaling-agnostic this interface is required so
that the Proxy Gateway can control the media session. In
other words, the Proxy Gateway must assign addresses
and ports on which the Media Gateway has to listen
on and to forward RTP streams. From the deployment
point of view in small networks the co-location of Proxy
Gateway and Media Gateway in one network node is
normally well suited. However, from a certain number of
VoIP users it is recommended to distribute several media
gateways (controlled by one proxy gateway) within the
network in order to balance RTP work load.
At the time when we started configuring our testbed we

found only two open-source proxying implementations
compliant with our requirements. Because of this limited
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Figure 5. Typical Proxying Scenario

offer we therefore solely evaluated the following two
Proxy Gateways: Mini SIP Proxy (MSP) developed by
Fraunhofer FOKUS [13] and SIP Express Router (SER)
with the extension module nathelper. Regarding the Media
Gateway, MSP already provides an integrated SIP gate-
way solution including a Media Gateway named UDP
forwarding daemon (ufwdd). The Portaone RTP Proxy is
used to support SER for media interworking.

VI. MEASUREMENT ARCHITECTURE

The focus of the performance evaluation involves na-
tive, tunneling and proxying scenarios for SIP (as dis-
cussed in [14]). In order to fulfill the different archi-
tectural requirements a universal testbed approach was
developed that offers a maximum of flexibility.
In general, the testbed architecture follows a SIP ar-
chitecture which reflects a realistic VoIP scenario with
two involved domains. Thereby two UAs (caller and
callee) and the corresponding proxy servers (Inbound
and Outbound) form a so called SIP Trapezoid. In the
depicted testbed infrastructure (see Figure 6) n7argon
and n7xenon host the user agents and n7radon and
n7helium act as proxy servers. For the automation of
VoIP testing SIPp, an open-source call flow generator for
SIP, acts as UA. Based on scenarios described in XML-
format, SIPp establishes and releases a given number of
(concurrent) sessions depending on the configured call
rate (calls per second, cps). As proxy server, the open-
source implementation SER (SIP Express Router) was
chosen. In order to use the proxy servers as flexible as
possible they are configured as dual-stack nodes serving
simultaneously the IPv4 as well as the IPv6 domain.
For the purpose of SIPv6 transitioning [9] we need one
additional node (n7neon) which plays a multi-functional
role. Depending on the scenario it is used to function
as a tunnel-endpoint for 6to4 [10] and Teredo [11] or
it implements a translating SIP Gateway using SER or
Mini SIP Proxy (MSP) [13] for IPv4/IPv6 interworking.
Furthermore, this node provides domain-specific services
like DNS, DHCP, or IPv6 router advertisements.
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Figure 6. Universal Testbed Architecture

A. IPv4/IPv6 Backbone
The performance results presented in this paper are

showing measurements conducted within a closed local
network. But we are currently also doing measurements
directing the traffic through the network of incumbent
Telekom Austria. To serve these both purposes we devel-
oped a very flexible backbone infrastructure. The cloud
shown in Figure 6 represents a logical backbone network
that can either be the local network or the infrastructure
of Telekom Austria. This solution enables a quick and
simple reconfiguration depending on whether the local or
the real-world backbone should be used.

B. Setting up Transition Scenarios
In principle, the developed architecture allows to cover

almost every combination of IPv6 Transition techniques.
By flexibly mapping them on the SIP Trapezoid different
IPv4/IPv6 interworking scenarios are viable.
The performance measurements presented in this paper
are realized in the designed testbed where each scenario
requires a corresponding test setup.

Native - The native scenario needs only the two UAs
and their corresponding proxy servers operating uniformly
with either IPv4 or IPv6.

Tunneling - For the tunneling setup the user agent
n7argon possesses merely an IPv4 address. To interwork
with native IPv6 nodes n7argon establishes a tunnel
(6to4/Teredo) with n7neon which acts as terminating
tunnel-endpoint. All other nodes including both proxy
servers run IPv6.

Proxying - In this scenario the left domain (n7xenon
and n7radon) deploys native IPv4 and the right one
(n7helium and n7argon) runs only IPv6. The proxying
setup introduces an interconnecting proxy gateway that
translates signaling information and a media gateway
responsible for media translation. Both functionalities are
implemented on n7neon.

C. Synchronization Aspects
Generally, distributed testbed architecture introduces

well known challenges including one-way measurements,
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clock synchronization, and accuracy/deviation. One ap-
proach for synchronizing a network is using NTP (Net-
work Time Protocol). The protocol is based on a hierar-
chical structure starting from an atomic clock as top-level
UTC (Universal Time Coordinated) reference and apply-
ing a server/client model to propagate time information.
Additionally, it is also possible to deploy external time
triggers, e.g. GPS (Global Positioning System) or DCF77.

For the purpose of our performance evaluation a
slightly different requirement is given. It is not mandatory
to share UTC time within the testbed but to have accu-
rately synchronized nodes with a common (relative) time
base (accuracy ≤ 10µs). To satisfy this need, the testbed
architecture is supported by a shadow network which is
only used to transport NTP traffic.
In this shadow network n7krypton acts as the reference
time server which synchronizes within a poll interval
between 16 and 64 seconds with the time reference of
the University of Vienna. This frequent synchronization
reduces the drift of the local clock. The remaining nodes
are synchronizing with n7krypton using a basic interval
of 16 seconds however supported by burst; once synchro-
nization is scheduled the clock is serially adjusted eight
times at an interval of 2 seconds.

On the basis of the mentioned measures we achieved
an accuracy of ± 25µs which offers a sufficient resolution
for the performance evaluation presented in this paper.

VII. PERFORMANCE RESULTS

This section presents results of the performance mea-
surements conducted using the LAN setup. The evaluation
of signaling delay compares tcs (Call Setup Time, see
Figure 2) between

• Native IPv4 - Native IPv6
• 6to4 Tunneling - Teredo
• SER - MSP

To generate a realistic workload 10 cps (calls per second)
are established and each call conveys a 12 seconds audio-
file which is mirrored at the callee’s side. One test cycle
per scenario comprises overall 100 calls, this means that
after 10 seconds 100 concurrent calls are set up. This peak
lasts 2 seconds and consumes a maximum bandwidth of
about 9 - 12 MBit/s depending on the chosen transition
scenario (neglecting signaling traffic). The reasons for
the varying bandwidth are caused by different IP-header
lengths and the tunnel overhead for 6to4 and Teredo.

The first part of the performance evaluation deals
with the Call Setup Time comparing native, tunneling
and proxying. The subsequent section considers media
transport and concludes the performance results showing
the One-Way Delay of RTP packets.

A. Signaling delay

As depicted in Figure 2, tcs is the time it takes to
establish a SIP call in the 3-way-handshake (INVITE-
OK-ACK). The results in this section represent a set of
100 calls for each scenario. Figures 7 - 12 sum up the

values of tcs in form of a histogram supported with a
quantile. The quantile indicates the percentage of values
within a given Call Setup Time. The evaluation is further
done by comparing tcs at 80 percent of the quantile.

The comparison between both native scenarios (IPv4
and IPv6) reveals an explicit advantage of IPv4, especially
obvious if considering the quantile at 80 percent. IPv4 hits
this level at about 4ms where IPv6 needs almost 5ms, i.e.,
a 25 percent longer delay (compare Figure 7 and 8). This
result could be explained with the 128-bit IPv6 address
compared with 32-bit IPv4 address. In general, there is
no deducible difference between the implemented IPv4-
and IPv6-stacks.
Comparing both Tunneling mechanisms, 6to4 has an ob-
vious advantage. The difference is about 1ms if following
the quantiles (see Figure 9 and 10). The decisive reason
might be the implementation, as 6to4 runs in kernel-space
and Teredo is an open source user-space implementation.
Furthermore, Teredo utilizes a mechanism to clarify in
advance if a Teredo address is currently assigned which
also consumes time. At this point it must be mentioned
that using tunneling mechanisms requires preconditions
which guarantee that all tunneling components are acces-
sible. This issue especially addresses the availability of
relays which provide the connectivity to the IPv6 Internet.
Prior to starting discussion the proxying scenarios, it
has to be pointed out that for SER and MSP we use a
different scaling of the X-axis, Figure 11 and 12. This is
required as especially MSP exceeds the determined scale.
It must be stressed that MSP is only a proof-of-concept
implementation conducted in the 6NET project and not
designed for high performance. However, very popular
and widely accepted SIP Express Router causes a four
times longer delay compared to the scenarios considered
previously. The larger Call Setup Time can be easily
explained as this approach introduces an additional proxy
server for IPv4/IPv6 interconnection. This proxy must
translate SIP (and SDP) between IPv4-/IPv6-domain and
has also to control a media relay.
Generally, SERs 80-percent-delay of 20ms introduced in a
real inter-domain VoIP scenario represents an acceptable
delay in terms of the 150ms time budget that defines a
soft upper limit for adequate voice quality between User
Agents. Concerning MSP, further tests were conducted
with smaller workload and once the call rate falls below
5cps a compact but five times longer delay than that of
SER can be observed.

B. Media data delay

This subsection compares the six scenarios in terms
of one-way packet delay. Each of the above mentioned
call scenarios signals a SIP session in order to convey
an audio-file that last 12 seconds. The audio is coded
using G.7111 at a packetization interval of 20 ms which
results in a packet size (RTP payload) of 160 Bytes. Per
second 50 RTP packets are sent, this yields 600 packets

1G.711 uses a rate of 8000 samples/per second and 8 bits per sample
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Figure 7. Native IPv4
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Figure 8. Native IPv6
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Figure 9. 6to4 Tunneling
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Figure 10. Teredo
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Figure 11. SIP Express Router (SER)
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Figure 12. Mini SIP Proxy
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in 12 seconds. A VoIP call establishes two audio channels
(outgoing/incoming) and so the overall number of audio-
packets per call is 1200. Within one scenario 100 calls
are established (with a rate of 10cps). The gained set of
12000 RTP packets is used to derive meaningful statistical
values.
Table I represents arithmetic mean, median and standard
deviation of each scenario. Arithmetic mean and median
are very similar whereas median is more robust against
outliers. The standard deviation defines the deviation
(root-mean-square) of the values from their arithmetic
mean. Native IPv4 and native IPv6 behave generally

TABLE I.
COMPARING ONE-WAY DELAY

Scenario Mean Median Deviation
Native IPv4 0.188ms 0.132ms 0.146ms
Native IPv6 0.190ms 0.139ms 0.230ms
6to4 Tunneling 0.200ms 0.180ms 0.292ms
Teredo 0.964ms 0.742ms 0.818ms
RTP Proxy 10.017ms 10.660ms 6.130ms
ufwdd 0.201ms 0.169ms 0.158ms

almost identically, however IPv6 has an indiscernible
longer delay. This could be argued with the larger IP-
header but the difference is so small that it is within
uncertainty of measurement.
Between both tunneling mechanisms an evident difference
is obviously present. A factor of about 4.5 represents
unambiguously the weakness between a kernel- and a
user-space implementation.
Once again it must to be pointed out that for the one-way
delay evaluation only media traffic was considered, thus
the proxying solutions are reduced on the entity which
does media translation. The Portaone RTP Proxy (SER)
shows an unexpected slow packet processing compared
with the other scenarios, but it must be stressed that
no packet loss occurs. On the other hand, ufwdd (MSP)
introduces only a small translation delay but with higher
workload (as gradually generated during a test case) an
increasing packet loss was observable. This effect cannot
clearly be reasoned but it is imaginable that too short
buffer sizes are applied. However, the throughput per-
formance of ufwdd is impressive and almost comparable
with native or 6to4 scenarios.

VIII. CONCLUSIONS

IPv6 transition in general is well covered and specified
but there are still application-specific aspects which have
to be considered. In terms of SIP for instance, transition
can be best handled with the Proxying solution which is
an enhanced application-specific approach. In the context
of VoIP we are faced with strict limitations concerning
delay, jitter and packet loss and so we must stress the
need for performance characterization and evaluation for
IPv6 transition. This is also the main motivation for the
experimental approach we represented in this paper.
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