Mechanisms for Robust Multimedia Conferencing Using SIP

Author: Heidi-Maria Rissanen

Supervisor: Prof. Jörg Ott

Instructor: Gonzalo Camarillo, M.Sc.(Tech.)

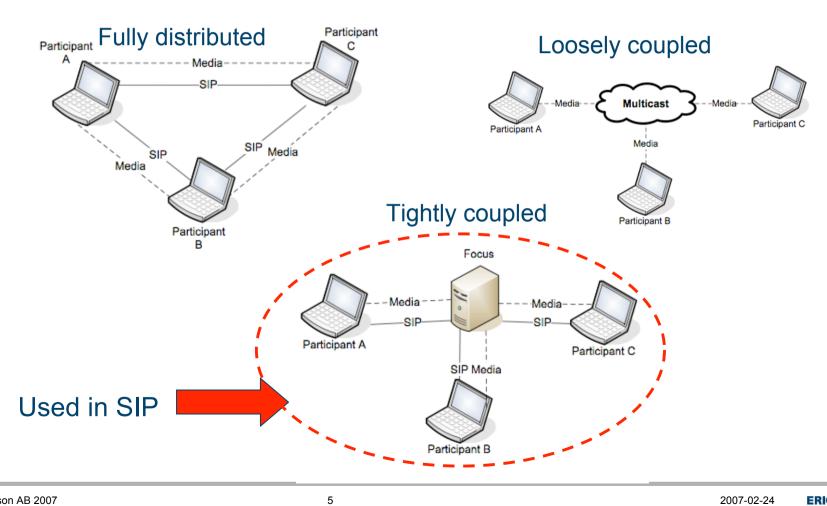
Oy LM Ericsson Ab, Finland

Contents

- Background
- Objectives
- Conferencing frameworks
- Prototype implementation
- Robustness in SIP conferences
- Conclusions

Background

- The Session Initiation Protocol (SIP) is the most widely used Internet telephony standard
- Multimedia conferencing using SIP is steadily increasing
 - Still, there are no built-in mechanisms in the SIP protocol to ensure the robustness of conferencing services

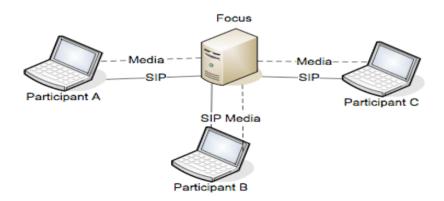

ERICSSON 5

Objectives

- Theoretical part of the thesis
 - Propose mechanisms for improving the robustness of SIP conferencing
- Practical part of the thesis
 - Implement the SIP conferencing functionality on a Session Border Controller (SBC)
 - SBC is a device that can be used in Voice over IP (VoIP) networks to control both signaling and media streams
- Research methods
 - Literature survey
 - Prototype implementation

Conferencing

Conferencing can be done in several ways:


ERICSSON **S** 2007-02-24

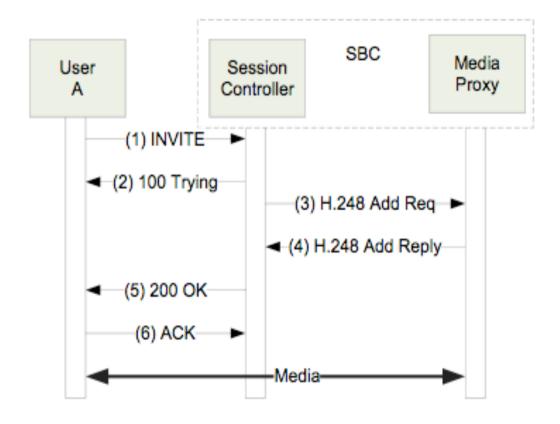
Conferencing frameworks

- There are two conferencing frameworks defined by the IETF (Internet Engineering Task Force)
 - The SIPPING conferencing framework
 - The XCON conferencing framework
- Frameworks define the logical entities and terminology to be used for conferencing
- SIPPING uses SIP as the signaling protocol, XCON does not depend on any particular signaling protocol
 - The XCON framework is SIPPING compatible


Conferencing frameworks (cont.)

- The central component of the conferencing model is a conference server called focus
 - Has a signaling relationship with every conference participant
 - Is responsible e.g. for the media streams of the session, conference policy, notifications about the state changes of the conference.
 - Participants contact the focus by using a unique conference URI
 - e.g. sip:discussion_on_travel@conference.com

© Ericsson AB 2007 7 2007-02-24 **ERICSSON**


Prototype implementation

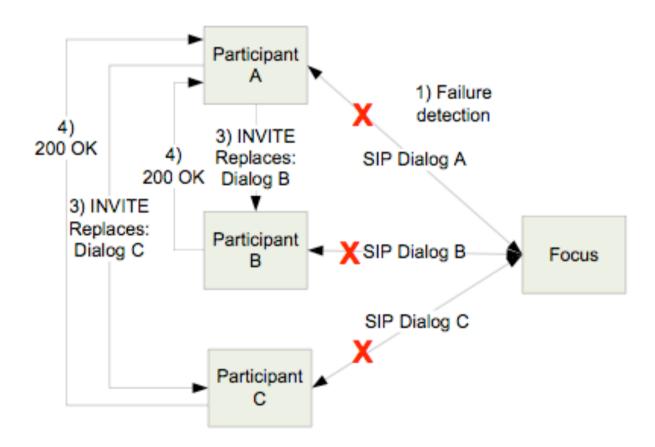
- Session Border Controllers are used for managing the signaling and media streams of VoIP calls
- The objective of the prototype was to implement conference focus functionality on an existing Session Border Controller (SBC)
 - Support small-scale SIP conference sessions

© Ericsson AB 2007 8 2007-02-24 **ERICSSON** \$

Session setup

Example message

```
INVITE sip:conference@131.160.36.15:5060 SIP/2.0
Via: SIP/2.0/UDP 127.0.0.2:5062
From: sipp1 <sip:sipp1@127.0.0.2:5062>;tag=15
To: <sip:conference@131.160.36.15:5060>
Call-ID: 1-18098@127.0.0.2
CSeq: 1 INVITE
Contact: sip:sipp1@127.0.0.2:5062
Max-Forwards: 70
Subject: Conference Call
Content-Type: application/sdp
Content-Length: 134
v=0
o=user1 53655765 2353687637 IN IP4 127.0.0.1
g = -
c=IN IP4 131.160.36.15
t=0 0
m=audio 30106 RTP/AVP 0
a=rtpmap:0 PCMU/8000
```


Robustness in SIP conferences (1)

- A robust system will continue operating normally even if there is a failure or incorrect input is passed into the system
- To improve the robustness of SIP conferencing we need a mechanism for
 - replicating the state of the conference session into the system
 - detecting the failure of the focus
 - identifying nodes capable of acting as a focus
 - electing the next focus
 - transferring the session to the new focus

ERICSSON **S**

Robustness in SIP conferences (2)

 Run algorithm for selecting next focus. If it is this node, replace dialogs

Robustness in SIP conferences (3)

- For state replication and for identifying possible backup focus candidates we use two existing SIP extensions with slight modifications
 - As a participant joins, it indicates its conferencing capabilities in the INVITE message
 - Participants have different roles in the conference
 - The focus informs every node that is "possible focus" about the state changes in the conference
 - The backup focus candidates then have the needed information to re-establish signaling and media streams

© Ericsson AB 2007 13 2007-02-24 **ERICSSON**

Robustness in SIP conferences (4)

- For detecting the failure we use periodic session refreshes as already defined in SIP
- For electing the focus we use a simple deterministic algorithm
 - Every backup focus candidates runs independently

ERICSSON \$

Conclusions

Theoretical part

- Most of the needed functionality for robust conferencing using SIP is already defined
 - Only slight modifications were needed in two specifications

Practical part

- The SIP conferencing functionality was successfully implemented, the concept was proved to true
- Suggestions for future work
 - How the mechanisms could be used for load balancing of conferencing foci
 - Large-scale conferences
 - More advance algorithms for backup focus election

ERICSSON 🗲

