
 1

Spam Detection in Voice-over-IP Calls through Semi-Supervised Clustering

Yu-Sung Wu, Saurabh Bagchi1 Navjot Singh2 Ratsameetip Wita3

1 School of Electrical & Computer Eng., Purdue University, West Lafayette, IN 47907
2 Avaya Labs, 233 Mt. Airy Rd., Basking Ridge, NJ 07920

3 Chulalongkorn University, Thailand
{yswu,sbagchi}@purdue.edu, singh@avaya.com, Ratsameetip.W@Student.chula.ac.th

Abstract

In this paper, we present an approach for detection of

spam calls over IP telephony called SPIT in VoIP systems.
SPIT detection is different from spam detection in email in
that the process has to be soft real-time, fewer features are
available for examination due to the difficulty of mining
voice traffic at runtime, and similarity in signaling traffic
between legitimate and malicious callers. Our approach
differs from existing work in its adaptability to new
environments without the need for laborious and error-
prone manual parameter configuration. We use clustering
based on the call parameters, using optional user feedback
for some calls, which they mark as SPIT or non-SPIT. We
improve on a popular algorithm for semi-supervised
learning, called MPCK-Means, to make it scalable to a
large number of calls and operate at runtime. Our
evaluation on captured call traces shows a fifteen fold
reduction in computation time, with improvement in
detection accuracy.

Keywords
Voice-over-IP systems, spam detection, spit detection, semi-
supervised learning, clustering

1. Introduction

 As the popularity of VoIP systems increases, they are

being subjected to different kinds of security threats [1]. A
large class of the threats such as call rerouting, toll fraud,
and conversation hijacking incur deviations in the protocol
state machines and can be detected through monitoring the
protocol state transitions [2],[3]. Additionally,
cryptographically secure versions of the common VoIP
protocols, such as Secure SIP and Secure RTP, address
many of the attacks presented in the literature. However,
spam calls in VoIP [4], commonly called SPIT, are
becoming an increasing nuisance. The ease with which
automated SPIT calls can be launched can derail the
adoption of VoIP as a critical infrastructure element.
Existing monitoring and cryptographic solutions are not
immediately applicable to SPIT detection. In this paper, we
address the problem of detection of SPIT calls.

Detection of spam emails is a mature field and there
are some similarities to our problem. In both domains,
users can provide feedback about individual email or call,
for the latter, through a built-in button in some
commercially available VoIP phones. However, there exist
significant differences⎯VoIP traffic is real-time and the
detection should ideally be real-time as well; some features
are expensive to extract in real-time, especially those in
voice traffic; the signaling patterns are likely similar in
legitimate and malicious calls rendering content-based
filtering on signaling traffic ineffective; and features from
multiple protocols used in VoIP may be relevant.

In this paper, we present the design of a system that
uses semi-supervised machine learning for detection of
SPIT calls. It builds on the notion of clustering whereby
calls with similar features are placed in a cluster for SPIT
or legitimate calls. Call features include those extracted
directly from signaling traffic, those extracted from media
traffic, such as proportion of silence in the call, and those
derived from calls. However, previous approaches that use
thresholds [5] on the call features are difficult to use in
practice since the nature of SPIT calls varies widely.
Therefore, we learn the features to use and their relative
importance in clustering through runtime observations,
which include user feedback.

The popular semi-supervised clustering algorithm
called MPCK-Means [6] scales as O(N3) where N is the
number of calls. This would generally be too expensive for
real-time operation. We modify this to create our algorithm
called eMPCK-Means, using VoIP specific features to
reduce it to O(N). Such specialization includes the early
use of user feedback and prior knowledge of the number of
clusters. Additionally, we create an incremental protocol
called pMPCK-Means, that can perform the detection as
soon as the call is established.

We evaluate the protocols using four call traces with
different characteristics of SPIT and non-SPIT calls, over
different proportions of user feedback and accuracy of the
user feedback. With a batch of 400 calls, eMPCK-Means is
15 times faster than MPCK-Means, while achieving better
detection coverage in terms of true and false positives.
Since pMPCK-Means can examine a limited set of call

 2

features, it works well only with a large fraction of calls
with accurate user feedback.

2. Related work

Rosenberg [4] details the problem of VoIP SPIT and

gives various high-level conceptual solutions. The
solutions can be placed in three categories [7]: (1) Non-
intrusive methods based on the exchange and analysis of
signaling messages; (2) Interaction methods that create
inconveniences for the caller by requesting them to pass a
checking procedure before the call is established; (3)
Callee interaction methods that exchange information with
the callee on each call. An example work in category 1 is
[8] where the authors look at the SIP signaling traffic
pattern to detect SPIT. However, they do not provide
quantitative data on the detection accuracy. Our
experimental results indicate solely relying on SIP message
patterns will give low detection coverage. The work by
Quittek [7] generates a greeting sound or faked ring tone to
the caller right after the call is established and monitors the
response voice patterns from the caller to differentiate
between human caller and a SPIT generator. This falls in
category 2. In comparison, our work encompasses
categories 1 and 3.

Kolan [9] presents an approach which maintains the
trust information for each caller. The information can be
automatically built up through user feedback, or through a
propagation of reputation via social networks. The
approach can be used in our system where we can embed
the caller’s trust as one of the call features. However, the
reputation database may grow large and a reputation
system can be gamed by false praise or false blame.

Clustering is a way to learn a classification from the
data [10], especially with unlabeled data. Clustering
techniques have been used for detecting e-mail spam in
[11],[12]. On the other hand, classification techniques such
as SVM [13] are popular for data classification. However,
they typically require labeled data and do not take
unlabeled data into consideration. Recent developments in
semi-supervised classification techniques [14], such as
semi-supervised SVM [15], incorporate both labeled and
unlabeled data.

3. Design

3.1 Structure of VoIP calls

There are typically three phases involved in a VoIP

phone call [16]. The first phase is call establishment
through a three-way handshake, which involves (i) the
caller sending a SIP INVITE message to the proxy server
and the server forwarding the INVITE message to the
callee, (ii) the callee replying with a SIP OK message, and
(iii) the caller sending SIP ACK message to complete the
call establishment phase. The second phase is the
conversation, which contains the media stream (voice)

transmitted between the caller and the callee typically
using RTP/RTCP [17]. The last phase is the call tear down
phase, which can be initiated by either the caller or the
callee sending a SIP BYE message followed by SIP OK
and SIP ACK messages.

3.2 Characteristics of VoIP SPIT calls

A blacklist-based approach can be used at the call

establishment phase based on source IP or From URI to
drop calls from known SPIT sources. In the media stream
phase, a typical pattern one can imagine for SPIT calls is
that the caller speaks more than the callee. Another pattern
is that the length of the media stream phase, i.e., the call
duration, is shorter in the case of calls answered by a live
person since SPIT calls are generally undesirable. Also,
one can assume that it is more likely that for a SPIT call, a
call termination will be initiated by the callee, i.e., the
callee sends the SIP BYE message.

Since SPIT calls are usually large volume calls made
by some spitter within a period of time, we found that it is
also useful to look for patterns in a batch of calls. Certain
features are available when looking at the collective set of
calls, such as the inter-arrival time between calls. Also
statistical learning can only occur with a batch of calls.

3.3 Detection scheme

A VoIP environment typically consists of multiple

domains with each domain composed of a few proxy
servers and phones belonging to end users. Figure 1 shows
an example VoIP environment consisting of two domains.
In a VoIP environment, a proxy server’s main function is
to route the signaling messages. For the specific example
we show, here Proxy #1 is used to route the signaling

Figure 1. Detecting Spit Calls in a VoIP Environment

SIP based
VoIP Proxy
Server #1

Server-side
Detector

SIP based
VoIP Proxy
Server #2

SS
A B C

E F

S

: normal user

: spitter

Legend

Client-side
Detector

Client-side
Detector

Client-side
Detector

Spit
Detector

 3

messages among phones {A,B,C}. And similarly, Proxy #2
is used to route the signaling messages among phones
{E,F}. Cross domain phone calls {A,B,C}R {E,F} are
collaboratively handled by Proxy #1 and Proxy #2. Once a
phone call is established, subsequent messages (signaling
and voice) can travel directly between phones without
involving the proxies. However, an ISP can mandate all
traffic pass through the proxies, which is often the case for
billing and security purposes.

Our approach in detecting SPIT calls involves placing
local detectors at the SIP proxies and the phones in the
managed domain. The domains that have our detection
mechanism are called managed domains and others are
called unmanaged domains. Essentially, the detectors
require observability of the signaling and the media
streams within the managed domain. A spitter can exist as
any phone in a VoIP environment, whether within a
managed (phone B) or an unmanaged domain (phone E).

The embedded detectors collect the information of the
phone calls and send them to the SPITDetector, where the
logic for differentiating SPIT calls from non-SPIT calls
executes. The decoding of the traffic and calculation of the
call features are handled by the respective server-
side/client-side detectors and only a digest of the necessary
information is forwarded up to the detector, thus
minimizing network traffic.

SPITDetector supports two modes of detection:
Mode A: Look at each phone call with early detection:
In this mode, the SPITDetector has to determine whether a
call is a SPIT or not before the media stream of the call is
established. This means that the detection has to be
completed before the callee picks up the phone. This mode
is useful from an end-user’s point of view since SPIT calls
can be potentially blocked without further annoyance.
Mode B: Look at the whole batch of phone calls: With
Mode B, we assume received calls are kept in a collection
which are then presented in a batch to our semi-supervised
clustering algorithm. This mode provides higher detection
accuracy than Mode A due to the availability of complete
call feature information. Mode B is attractive to a service
provider, rather than to an end user.

4. SPIT Detection using Semi-Supervised
Clustering

4.1 Background

In our problem context, each VoIP call is regarded as
one data point. We are interested in clustering call data
points into two clusters, one containing the SPIT calls, and
the other containing the non-SPIT calls. In general, there
may be multiple sub-clusters within each cluster
corresponding to radically different kinds of SPIT or non-
SPIT calls. We explore this approach of multiple sub-
clusters further in Sec. 4.7.

Semi-supervised clustering [18], [19], [6] is a recent
development in the data clustering research community
that aims to address the issue of selecting the proper
criteria for clustering. Semi-supervised clustering allows
the use of optional labeled data for a subset of the runtime
observations to progressively modify the clustering
criteria. This means that one does not need to determine a
priori which features of the data points should be used for
clustering. The clustering criteria will be trained into
generating clusters that obey the user-labeled data as
faithfully as possible [6]. The implicit assumption is that
user feedback is perfectly accurate. In our work here, we
evaluate the impact of noise in the user feedback.

4.2 VoIP call features for clustering

We construct a data point from each VoIP call based

on 17 features: 1-2. From/To URI, 3. Start time,
4.Duration, 5. # of SIP INVITE messages, 6. # of ACK
messages, 7-8. # of BYE messages from caller/callee, 9.
Time since the last call from the originator of the current
call, 10-15. # of 1xx, 2xx, 3xx, 4xx, 5xx, and 6xx SIP
Response messages, 16. Call frequency of the originator of
the current call, 17. Ratio of non-silence duration of the
callee to the caller media streams.

For Mode A early detection, only features 1, 2, 3, and
9 are available. Feature 17 is derived from the RTP media
stream by client-side detectors if the media streams are
configured to flow directly between clients [20] or it can
be provided by the server-side detector if the media
streams are configured to flow through the SIP Proxy. We
select the universe of features using our domain
knowledge, to cover different facets of a VoIP call and to
limit the number of features so that online clustering is
feasible.

4.3 Labeled data via user feedback

Phone calls received in the managed domain can have

optional user feedback information indicating whether a
call is a SPIT call or a non-SPIT call. The corresponding
data point will be labeled with a SPIT or a non-SPIT tag
and fed into the semi-supervised clustering process. Such a
data point will be used for adjusting the clustering criteria.

4.4 Extended K-Means for semi-supervised
clustering: MPCK-Means

For this work, we select the semi-supervised

clustering algorithm called MPCK-Means [6].

()()
()

()

()
()

2
mpckm Ax

x ,x x

x ,x x

x log det A

 + x ,x 1

 + x ,x 1

i i
lii

i j i

i j i

i l l

ij M i j i j
M

ij C i j i j
C

w f l l

w f l l

χ
τ μ

∈

∈

∈

= − −

≠

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

∑

∑

∑

 (1)

 4

 () ()T2
Ax x A x

il i
i i i i l i iμ μ μ− = − − (2)

 () 2 2

A A
1 1x ,x x x x x
2 2l li j

M i j i j i jf = − + − (3)

 () 2 2' ''
AA

x ,x x x x x
i i

ll ji
C i j l l i jf = − − − (4)

()()

()()()

() ()()

()()

,

' '' ' ''
,

1

A

1 1
2

1

i h

i j h

i j h

T
h h i h i hx X

T
ij i j i j i jx x M

T
ij h h h hx x C

T
i j i j i j

X x x

w x x x x l l

w x x x x

x x x x l l

μ μ
∈

∈

∈

−

⎛= − −⎜
⎝

⎡ ⎤+ − − ≠⎣ ⎦

⎛
+ − −⎜

⎝

⎞⎞⎡ ⎤− − − = ⎟⎟⎣ ⎦⎠⎠

∑
∑

∑
 (5)

Eq. (1) is the objective function that MPCK-Means
minimizes. li is the cluster that point xi is associated with.
The main idea is the same as K-Means where intra-cluster
distance is being minimized. However the Euclidean
distance metric in MPCK-Means is weighted by a cluster-
specific matrix Ali (one can also use the same A matrix
across all clusters)[6]. Ali is modified based on user
feedback and points in cluster li following Eq.(5).

The user labeled data in MPCK-Means is supplied in
the form of clustering constraints M (must link sets) and C
(cannot link set). Here the M set specifies pairs of data
points that should be put in the same cluster while the C set
specifies those pairs of data points that should not be put in
the same cluster. In Eq. (1), the last two terms are used to
add penalty to the objective function from the violation of
these constraints. The function fM returns a value
proportional to the distance between the two points that are
in different clusters. The function fC returns a value that is
inversely proportional to the distance between two points
that are in the same cluster. The points xli′ and xli′′
represent the two farthest data points in Xli with respect to
their distance computed using Ali. The pseudo code for
MPCK-Means is listed as Algorithm 1 below.

Input: Set of data points { } 1

N
i i

X x
=

= , Set of must-link constraints
(){ },i jM x x= , Set of cannot-link constraints (){ },i jC x x= ,

of clusters K, Sets of constraints costs W and W , 0t ← .
Output: Disjoint K-partitioning { } 1

K
h h

X
=

of X such that objective
function mpckmτ is locally minimized.

Method:
1. Initialize clusters:
1.1. Create the λ neighborhoods { } 1P PN λ

=
 from M and C.

if Kλ ≥
Initialize { }(0)

1

K

h h
μ

=
 using weightiest farthest-first traversal

starting from the largest NP.
Else

Initialize { }(0)

1h h

λ
μ

=
 with centroids of { } 1P PN λ

=

Initialize remaining clusters at random

2. Repeat until convergence
2.1. For each data point ix X∈

*h = ()()(2()

A
argmin log det A

h

t
i h h

h
x μ− −

() [] () [])(,) (,), 1 , 1M i j j C i j ji j i jij ijx x M x x Cw f x x h l w f x x h l∈ ∈+ ≠ + =∑ ∑

Assign ix to *
1t

h
X +

2.2. For each cluster Xh, { () 1
1

(1) t
t

hx X h
X

t
h xμ +

+
∈

+ ← ∑ }

2.3. Update_metrics Ah for all clusters { } 1

K
h h

X
=

 (Eq. (5))

2.4. 1t t← +
Algorithm 1. MPCK-Means (Adapted from [6])

4.4.1 Mapping user feedback to pair-wise constraints
in MPCK-Means

The system keeps two sets: FS (data points of SPIT
calls from feedback) and FN (data points of non-SPIT calls
from feedback). For a data point xi, which has user
feedback, the user indicates xi ∈ FS or xi ∈ FN. With
respect to the MPCK-Means algorithm, must-link
constraints M are derived online from pairs of points (xi, xj)
∈ FS or (xi, xj) ∈ FN. Similarly, cannot-link constraints C
are created online from (xi, xj), where xi∈FS and xj∈FN.

For ease of exposition, we initially discuss the case
with 2 clusters—one each for SPIT and non-SPIT calls.
We discuss the extension to multiple clusters in Sec. 4.7.
4.4.2 Building detection predicate

Given a cluster Xh from the clustering algorithm, we
use the number of data points with different user feedback
in the cluster to determine the association of the cluster. If

h S h NX F X F∩ > ∩ , the calls in Xh will be considered
SPIT calls; else, they will be considered non-SPIT calls.

4.5 Efficient MPCK-Means

In the cluster assignment step of MPCK-Means (Step

2.1) the time complexity on iterating through the must-
link/cannot-link peers of point xi is a O(N) operation. X is
the whole set of data points supplied to the clustering
algorithm. N=|X| is the number of data points. The
determination of the maximally separated points

'
hx and ''

hx used in fc(.) (Step 2.1 of Algorithm 1) and
update_metrics (Step 2.3) has time complexity O(N2). This
implies MPCK-Means is O(N3) since the operation has to
be done for each data point (actually O(cN3) where c is a
small fixed number of iterations till convergence). Thus,
MPCK-Means does not scale well with large data sets. For
our application, where N can be hundreds for a small-sized
domain or thousands for a mid-sized domain, it turns out to
be prohibitive time-wise to apply the original MPCK-
Means directly.

Therefore, we adapt MPCK-Means into the eMPCK-
Means (efficient MPCK-Means) algorithm (Algorithm 2).
In it, the maximally separated points are estimated through
an O(1) approximation algorithm. We use an O(N)

 5

implementation for the neighborhood creation process in
the cluster initialization step of MPCK-Means.
Additionally, the general practical experience with a K-
Means based algorithm is that it converges within a small
number of iterations for the main loop (Step 2 in MPCK-
Means). Combined these make eMPCK-Means O(N) and
the constant is small for a range of VoIP call traces.
4.5.1 eMPCK-Means : Initialize clusters

The eMPCK-Means algorithm creates the initial
neighborhoods directly from the user feedback FS and FN
sets. Specifically, it creates w neighborhoods {FS, FN , xn3,
xn4, …, xnw}, where {xn3, xn4, …, xnw} = X-FS-FN is the set
of data points not covered by the user feedback. The
complexity of this step is O(N). We use the same
weighted-farthest-first traversal as in MPCK-Means,
which is O(N) when the number of clusters is a constant.
Overall, the initialize clusters in eMPCK-Means has O(N)
complexity.
4.5.2 eMPCK-Means : efficient estimation of
maximally separated points ()' '',h hx x

In MPCK-Means, to find the exact maximally
separated points ()' '',h hx x used in Eq. (4) and Ah matrix

updating[6], it requires evaluating the distance
2

Ah
i jx x− for every pair of points (xi, xj)∈X, which is an

O(N2) operation. Since the matrix Ah is updated in each
iteration of the loop of step 2 in Algorithm 1, this
evaluation has to be repeated as well.

In eMPCK-Means, we estimate the maximally
separated points by first putting data points from X into an
array R[1..N] in a random ordering. We then iterate
through consecutive elements R[i] and R[i+1] in the array.
We set ()' '',h hx x to (R[i’], R[i’+1]) that gives the maximal

value of 2

A
R['] R[' 1]

h
i i− + . This operation (Step 2 in

Algorithm 2) is performed once right after the cluster
initialization step and is done K times, once for each
cluster h. The time complexity of this step is O(N).

However, since the Ah matrix is updated in each
iteration of MPCK-Means (Step 2.3, Algorithm 1), the
estimate ()' '',h hx x has to be updated accordingly as well. We

embed the updating process into the calculation of the
parameterized Euclidean distance 2

Ah
i jx x− (Eq. (2)). The

parameterized Euclidean distance is calculated in Eq. (3)
and Eq. (4) as well. The idea here is that when a pair of
points (xi, xj) is found to have a greater distance than the
current estimate ()' '',h hx x at the time of evaluating the

parameterized Euclidean distance, we will set the
maximally separated points estimate to (xi, xj). The
advantage of this approach is that it is an O(1) operation
and does not increase the order of complexity of eMPCK-
Means. However, this is an approximation because

suppose, in the loop to iterate through all the points, we are
at point xA and are calculating ||xA-xB||2. The point xC is to
be considered in a later iteration and (xA, xC) happens to be
the farthest pair of points. Then, the computation for point
xA will not have the accurate distance for the farthest pair
of points. Hereafter, when we refer to Euclidean distance
computation, we mean that it has maximally separated
point estimation embedded within it.

To insure that fC(.) function (Eq. (4)) does not evaluate
to negative values with our approximated estimation of
()' '',h hx x , we enforce that the second term is always

evaluated before the first term so that there is an
opportunity to update ()' '',h hx x .

4.5.3 Use only a fixed number of constraints in cluster
assignment step

In the cluster assignment step of MPCK-Means (Step
2.1, Algorithm 1), rather than iterating through the
complete must-link/cannot-link peers of xi, which makes
Step 2.1 O(N2), we choose a fixed-sized subset of them.
This corresponds to Step 3.1 in eMPCK-Means. This
optimization is hinted at by the fact that the must-
link/cannot-link information in our domain has significant
redundancy. A set of k1 and k2 calls placed, through user
feedback, in the SPIT and non-SPIT categories generates
k1

2+k2
2 must-link and k1k2 cannot-link constraints. On the

other hand, we see from experimental results in [6] that
MPCK-Means can work reasonably well even with a
limited numbers of constraints. The cluster assignment step
thus becomes O(N). In general, this can negatively affect
the clustering quality. However, we believe it is a trade-off
that is necessary in an effort to make the detection scheme
scalable.
4.5.4 Pre metrics update on the starting cluster(s)

In MPCK-Means, the first update metrics step (Step
2.3) occurs only after the first iteration of the cluster
assignment step (Step 2.1). In the first iteration of the
cluster assignment, a default identity matrix is assigned to
Ah, which directly affects the quality of the generated
clusters from the first iteration and has a long-term effect
on the quality of the eventual clusters as we see
empirically. Therefore, in eMPCK-Means we conduct a
metrics update (Step 1.2, eMPCK-Means, Algorithm 2)
early on, right after the initial clusters are generated from
the cluster initialization step. Intuitively, the user feedback
is available at the outset and this optimization allows the
Ah matrix to immediately adapt to the user feedback,
which results in more accurate clustering. Additionally, it
improves the convergence speed as we see later (Table 1).

Input: Set of data points { } 1

N
i i

X x
=

= , Set of must-link constraints

(){ },i jM x x= , Set of cannot-link constraints (){ },i jC x x= ,

Number of clusters K, Sets of constraints costs W and W ,

 6

Optional initial cluster centroids { }(0)

1

K

h h
μ

=
, 0t ←

Output: Disjoint K-partitioning { } 1

K
h h

X
=

of X such that objective
function mpckmτ is locally minimized.

Method:
1. If initial cluster centroids { }(0)

1

K

h h
μ

=
 is not given in the input

1.1. Create the λ neighborhoods { } 1P P
N λ

=
 with steps from Sec. 4.5.1.

if Kλ ≥

Use weightiest farthest-first traversal to select K

neighborhoods { }() 1

K
P h h

N
=

.
Assign the data points { }(0)

() 1

K

h P h h
X N

=
←

Initialize { }(0)
1

K
h h

μ
=

Else
{ }(0)

1h h h
X N

λ

=
←

Initialize remaining clusters at random
Initialize { }(0)

1

K
h h

μ
=

1.2. Update metrics Ah for all clusters { } 1

K
h h

X
=

 ([6]).
2. Initialization of maximally separated points ()' '',h hx x with respect

to each Ah.
3. Repeat until convergence
3.1. For each ix X∈

Randomly select
{ }
{ }
(,) ,

(,) ,

i j size

i j size

M x x M M cts

C x x C C cts

∈ ∈ =

∈ ∈ =
.

*h = ()()(2()

A
argmin log det A

h

t
i h h

h
x μ− −

() ())(,) (,), 1 , 1
i j i jx x M x x Cij M i j j ij C i j jw f x x h l w f x x h l∈ ∈⎡ ⎤ ⎡ ⎤+ ≠ + =∑ ∑⎣ ⎦ ⎣ ⎦

Assign ix to *
1t

h
X +

3.2. For each cluster Xh, { ()1
(1) 1

t
h

t tX hh x X xμ +
+ +← ∈∑ }

3.3. Update_metrics Ah for all clusters { } 1

K
h h

X
=

 ([6])
3.4. 1t t← +

Algorithm 2. eMPCK-Means

Algorithm 2 shows the proposed eMPCK-Means with
the above modifications to MPCK-Means. Step 1 decides
the starting K centroids (means) for the clusters through
the use of initial user feedback. For the specific case of the
user flagging calls as SPIT or non-SPIT, K=2.

Step 2 initializes the maximally separated points
estimation. Step 3.1 performs the cluster assignment. Step
3.2 updates the mean. Note that the mean can be updated
in constant time by keeping the sum of the data points and
performing an addition/subtraction when a data point is
associated with/unassociated from a cluster. Step 3.3
updates the matrix Ah for each cluster h. The goal of this
process is to pick Ah’s such that the objective function (Eq.
(1)) is minimized for the cluster assignment done in the
current iteration of Step 3. Conceptually, this process will
result in Ah’s that puts higher weights on those features
which are consistent among data points in the same cluster
and lower weights on those that are less consistent.

4.6 Progressive MPCK-Means

The eMPCK-Means algorithm assumes that the data
points are available in a batch, and is thus suited for Mode
B (batch mode) detection (Sec. 3.3). To support Mode A
per-call early detection, we create a variant called
progressive MPCK-Means (pMPCK-Means). The pseudo
code is given as Algorithm 3. The idea here is that when a
new call comes in, pMPCK-Means performs only the
cluster assignment step and only for the new data point.
The features “From URI”, “To URI”, “Start time”, and
“Time from the last call by the same caller” are available at
the beginning of the phone call and are used in pMPCK-
Means. For the features that are not available, pMPCK-
Means fills the data point xi with the mean values from the
cluster to which this point’s distance is being computed.
This is implicitly carried out in Step 4 of Algorithm 3.

In pMPCK-Means, the update metrics operation only
occurs occasionally when the cluster means have changed
significantly (exceeding a given threshold dthreshold).
Estimating the mean is an O(1) operation for each new
data point. This amortizes over many calls the cost of Ah
computation and the cost of re-clustering all existing data
points. However, a cost has to be paid in advance, which is
that we require reasonably sized cluster(s) to be grown on
the initial data points (|X| > tthreshold) through eMPCK-
Means. The reason is that we want the initial Ah matrix to
be as accurate as possible.

Algorithm: pMPCK-Means

Input: A new data point xt. , Disjoint K-partitioning { }(1)

1

Kt
h h

X −

=
of

{ }(1)
1 2 1, ,..,t

tX x x x−
−= .

Output: The cluster association lt for the point xt.
Disjoint K-partitioning { }()

1

Kt
h h

X
=

of { }()
1 2 1, ,.., ,t

t tX x x x x−= .

Internal Variables: m{ }
1

K

h h
μ

=

Method:
1. If t < tthreshold

{ }() (1)t t
tX X x−← ∪ ; { }()

1

Kt
h h

X
=

← ∅ ; Return

2. If { }()

1

Kt
h h

X
=

= ∅ (all clusters are empty)
{ }() (1)t t

tX X x−← ∪ .

Call eMPCK-Means to generate { }()

1

Kt
h h

X
=

 from ()tX .

m{ }()

1

K
t

h h h
μ μ

=
← ; Return

3. Randomly select
{ }
{ }
(,) ,

(,) ,

i j size

i j size

M x x M M cts

C x x C C cts

∈ ∈ =

∈ ∈ =
.

4. *h = ()()(2()

A
argmin log det A

h

t
i h h

h
x μ− −

() ())(,) (,)
, 1 , 1

i j i j
ij M i j j ij C i j jx x M x x C

w f x x h l w f x x h l
∈ ∈

⎡ ⎤ ⎡ ⎤+ ≠ + =⎣ ⎦ ⎣ ⎦∑ ∑

5. { }() (1)

1

Kt t
h h h

X X −

=
← ; { }* *

() ()t t
th h

X X x← ∪

6. If n* * * *
* *

22 ' ''
thresholdA A

/ d
h h

h h h hx xμ μ− − >

 7

/* x′h*, x′′h* are the maximally separated points wrt Ah* */

Call eMPCK-Means with initial centroids { }()

1

Kt
h h

μ
=

 to generate

{ }()

1

Kt
h h

X
=

 on ()tX ; m{ }()

1

K
t

h h h
μ μ

=
← .

Algorithm 3. pMPCK-Means

4.7 Multi-Class eMPCK clustering

We create a variant of eMPCK in which the initial

clusters are split into sub-clusters based on the call types
“calls going to voice mail”, “calls terminated immediately
after the call is established”, and “the remaining calls”.
These three types exhibit different patterns in the non-
silence call duration ratio (feature 17, Sec. 4.2). The sub-
clusters are formed for both SPIT and non-SPIT calls. This
is an attempt to guide the clustering process through expert
knowledge. The user feedback however is only able to
differentiate between SPIT and non-SPIT calls, and not
place a call into a sub-cluster.

5. Experiments and Results

5.1 Testbed

We set up a two-domain testbed with a topology

similar to Figure 1, one of the domains being protected by
our detection technique. We use Asterisk as the VoIP
proxy servers and MjSip for the phone clients. Each
domain has 90 phones acting as non-spitters and 6 phones
acting as spitters. We use the Poisson distribution to model
call arrival times and the Exponential distribution to model
call durations.

The generation of call traces was done by only one of
the co-authors without providing any information about the
nature of non-SPIT and SPIT calls to the rest of the team.
This was done by design so that the team working on the
detection system does not have any prior knowledge of the
call mix. Ideally we would have liked to perform the
evaluation on third-party call traces. However, at the time
of writing, no such call trace is publicly available.

5.2 Summary of call trace dataset

We collected four call traces from our testbed with

varying call characteristics as follows (call trace name,
Non-SPIT Call length average, Non-SPIT Call inter-
arrival time average, SPIT Call length average, SPIT call
inter-arrival time average, Number of SPIT calls in trace,
Number of non-SPIT calls in trace): (v4, 5, 30, 1, 2, 212,
171), (v5, 5, 10, 1, 10, 45, 338), (v6, 5, 30, 1, 10, 94, 289),
(v7, 5, 30, 5, 10, 81, 302). The time unit is minute. In terms
of similarity between SPIT and non-SPIT calls, in
decreasing order, the call traces are v5, v7, v6, and v4.

There are other characteristics which are shared by the
four call traces. Examples include a 60% chance of a call
being hung up by the caller for a non-SPIT call and a 10%

chance of being hung up by the caller (spitter) for a SPIT
call. The media streams for a SPIT call are dominated by
the spitter while for a non-SPIT call, the non-silence
duration on the caller and the callee media streams are
about the same on average.

Other experimental parameter settings are: at most 15
must-link and 15 cannot-link constraints are used. The
pMPCK-Means algorithm uses 100 data points initially
with eMPCK-Means before commencing incremental
operation. Each data point in the experiment is based on
the average from 50 runs with the same parameter settings.

5.3 Effect of proportion of user feedback

We evaluate the effect of the proportion of calls that

come with user feedback. We assume the same ratio for
both SPIT and non-SPIT calls. We assume the feedback is
perfectly accurate.

Figure 2 shows the clustering quality with respect to
four different algorithms proposed on call trace 4 in terms
of the F-Measure [6]. A larger F-Measure value means
better quality clustering. From Sec. 5.2, we know that call
trace 4 exhibits a very clear distinction between SPIT and
non-SPIT calls in terms of call duration and call inter-
arrival time. This makes eMPCK perform well with user
feedback ratio as low as 0.1. The original MPCK-Means
achieves the same level but with a higher user feedback
ratio of 0.2. The improved result of eMPCK is due to the
pre-metrics update (Sec. 4.5.4), which creates a more
accurate weight matrix A based on user feedback, prior to
iterating over the data points. The F-Measure from
eMPCK Multi Class drops with increasing user feedback
ratio because we break the cluster into sub-clusters based
on the call types. As a result, eMPCK Multi Class will put
different types of SPIT and non-SPIT calls into different
sub-clusters. Both will hurt the F-Measure since by
definition of F-Measure, these calls should be clustered
into the same cluster. This negative effect grows stronger
as the user feedback ratio increases.

Figure 3 and Figure 4 show the true positive (TP) and
false positive (FP) rates of SPIT detection on call trace v4.
What we can see here is that eMPCK Multi Class actually
performs well despite the poor F-Measure. eMPCK Multi
Class performs worse than eMPCK at low user feedback
ratio because breaking the initial cluster into sub-clusters
reduces the number of call data points with feedback in
each sub-cluster. This results in poor clustering and hence
low detection accuracy. Compared to eMPCK, MPCK’s
detection accuracy lags behind due to the lack of pre-
metrics updating. pMPCK performs rather poorly even
with call trace v4. However, it is still in the usable range
(e.g. 0.63 True Positive with a user feedback ratio of 0.2).
pMPCK’s poor performance is due to the limited features
available before the media stream is established.

 8

Due to space constraints, we show only the True
Positive curves for call traces v5, v6, and v7 in Figure 5,
Figure 6, and Figure 7 respectively. All the algorithms
perform worse with call trace v5 due to same inter-arrival
time of SPIT and non-SPIT calls. This makes the time
since last call from the same caller and call frequency
(features 9 and 16 in Sec. 4.2) much less useful. Another
factor is the number of SPIT calls in the call trace is
decreased to 45 (compared to 212 in v4) which further
lowers the clustering quality and detection accuracy.
Figure 8 summarizes the True Positive rates from eMPCK
across the four call traces. This basically corresponds to
how salient the differences between SPIT calls and non-

SPIT calls in the call traces are. In order, the easiest one is
v4, followed closely by v6, and then v7. The hardest is v5.
In v5, SPIT calls are almost indistinguishable from short-
duration non-SPIT calls.

We show error-bar (± 1 s.t.d.) for eMPCK in Figure
2. They are omitted in the rest of the figures for
presentation clarity. The general trend is that the errors
diminish with increasing ratio of user feedback. We
observe less than ± 5% error across the experiments on
call traces 4, 6, and 7 when user ratio is set beyond 0.1.
For call trace 5, the error is higher (up to ± 25% at 0.1
ratio).

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1
ratio of calls with feedback

F-
M

ea
su

re

Figure 2. Call trace v4 / F-Measure

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0 0.2 0.4 0.6 0.8 1
ratio of calls with feedback

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 3. Call trace v4 / TP

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1
ratio of calls with feedback

Fa
ls

e
Po

si
tiv

e
R

at
e

Figure 4. Call trace 4 / FP

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
ratio of calls with feedback

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 5. Call trace 5 / TP

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
ratio of calls with feedback

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 6. Call trace 6 / TP

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
ratio of calls with feedback

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 7. Call trace 7 / TP

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

ratio of calls with feedback

Tr
ue

 P
os

iti
ve

v4
v5
v6
v7

Figure 8. Compare eMPCK True

Positive Rate across call traces

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Noise level

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 9. TP vs. Noise in User Feedback

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Noise level

Fa
ls

e
Po

si
tiv

e
R

at
e

Figure 10. FP vs. Noise in User Feedback

5.4 Scalability of execution time

In this experiment we compare the running times of

MPCK and eMPCK by varying the number of call data

points. Call trace v7 is used for this experiment. For
MPCK, we apply exact optimizations which do not cause
loss of accuracy. For example, the maximally separated
points evaluation is re-executed only when the A matrix
gets changed. The results are based on code compiled with

 9

 MPCK eMPCK
v4 6.94 3.98
v5 7.80 7.83
v6 7.81 5.38
v7 6.94 4.7
Average 7.37 5.47
Table 1. Number of iterations to

convergence

MS VC++ 8.0 with default optimization level running on
Windows XP, Intel E6400 2.13 GHz CPU.

As Figure 11 shows, MPCK exhibits non-linear
growth in the running time as the number of call data
points increases (error bars are ±1 std.). eMPCK, on the
other hand, exhibits a linear growth in the running time.
Also, MPCK takes significantly longer to run compared
with eMPCK⎯15 times longer for a batch of 400 calls.
Looking at the number of iterations that each algorithm
takes to converge (Table 1), eMPCK fares better. The
running time advantage of eMPCK comes from the lower
number of iterations as well as the lower running time of
each iteration. The lower number of iterations is explained
by eMPCK’s update of Ah’s on the initialized clusters. For
call trace v5, the similarity in SPIT and non-SPIT calls
renders the Ah initialization ineffective and the number of
iterations is roughly equal for both algorithms.

5.5 Effect of
noise in user
feedback

We evaluated

different
algorithms with
various noise
levels in the user feedback. When we say the noise level is
c, it means that a fraction c of the user feedback is false,
i.e., a SPIT call is reported as non-SPIT and vice-versa.
We show the result with call trace 6 for this experiment.
The user feedback ratio is fixed at 0.3. Figure 9 shows the
true positive rate decreases as the noise level increases.
Observing the false positive rates in Figure 10, we
conclude that pMPCK is completely unusable through the
whole noise level range while the other algorithms are
usable at low noise levels. We conclude that pMPCK is
usable only for a high proportion of accurate user feedback.
Beyond noise level 0.5 eMPCK performance drops below
that of MPCK due to our design of the detection predicate
(Sec. 4.4.2), namely, considering the cluster that contains
more calls marked by the user as SPIT than non-SPIT, to
be the SPIT cluster. With noise level above 0.5, the user
feedback is wrong more often than right and the negative
effect is more pronounced in eMPCK than MPCK, since it
did a “better job” of clustering on the user feedback than
MPCK. As an example of a usable operating point,
consider that at noise levels 0.2 or below, eMPCK has both
true positive and true negative above 0.8.

0
0.5

1

0

0.5

1

-1

-0.5

0

0.5

1

ratio of feedback

volume = -0.319084

noise level

TP
 -

FP

Figure 12. MPCK (TP – FP) for call

trace v6

0
0.5

1

0

0.5

1

-1

-0.5

0

0.5

1

ratio of feedback

volume = -0.271882

noise level

TP
 -

FP

Figure 13. eMPCK (TP – FP) for call

trace v6

0
0.5

1

0

0.5

1

-1

-0.5

0

0.5

1

ratio of feedback

volume = -0.371324

noise level

TP
 -

FP

Figure 14. pMPCK (TP – FP) for call

trace v6

5.6 Evaluation with noise and feedback ratio

Here we perform an evaluation of all four proposed
algorithms with respect to the four call traces. Our
evaluation methodology considers the combined effect of
proportion of user feedback and the noise level and the
results are shown in Figure 12, Figure 13, and Figure 14.
In the 3D plot, the Z-axis corresponds to TP-FP, the
difference between True Positive rate and False Positive
rate, with respect to each pair of feedback ratio and noise
level. Intuitively, if TP-FP is greater than zero, it means
the detection gives more correct results than incorrect

results and can be regarded as a valid operating point
where the detection is useful. Due to page length limitation,
we show the 3D plots only for call trace 6. A general trend
we can see in the 3D plots is that when fixing the noise
level, the TP-FP value climbs to a peak and then goes
down when varying the feedback ratio from 0 to 1. There
is no sharp breakdown of performance for any of the
algorithms. If the user feedback is accurate, then even with
low ratio of user feedback, the performance is good for
MPCK and eMPCK. The performance of pMPCK on the
other hand is acceptable only close to the extreme region
of almost perfect user feedback for almost all calls. To

0

240

480

720

960

1200

0

4000

8000

12000

16000

20000

0 100 200 300 400

eM
PC

K
Ti
m
e
(m

s)

M
PC

K
Ti
m
e
(m

s)

Num of data points

MPCK eMPCK

Figure 11. Running Time

 10

give an overall quantification of the detection quality, we
define the volume metric based on the integral (Eq. (6)). In
the ideal case where TP-FP is maintained at 1 through the
entire range of noise levels and feedback ratio values, the
volume will be 0.9. Table 2 shows the volume for each
combination of algorithm and call trace. Call trace v5 gives
the lowest volume corresponding to the worst performance
for all algorithms. Averaged over the entire range, we see
that eMPCK performs best followed by eMPCK (Multi
Class), MPCK, and pMPCK.

 ()
1 1

0 0.1

: noise level, :feedback ratio
n f

Volume TP FP df dn

n f
= =

= −∫ ∫ i i (6)

TP-FP
Volume v4 v5 v6 v7 avg.

MPCK 0.048 -0.595 -0.319 -0.388 -0.314

eMPCK (Multi
Class) 0.068 -0.590 -0.330 -0.402 -0.314

eMPCK 0.042 -0.577 -0.272 -0.340 -0.287

pMPCK 0.015 -0.596 -0.371 -0.411 -0.341

Table 2. Summary of TP-FP volume comparisons

6. CONCLUSION

In this paper, we proposed a new approach to detect
SPIT calls in a VoIP environment. We map each phone
call into a data point based on an extendable set of call
features, derived from the signaling as well as the media
protocols. This converts the problem of SPIT detection
into a data classification problem, where a classic solution
is the use of clustering. We apply semi-supervised
clustering, which allows for the optional use of user
feedback for more accurate classification. This
corresponds to users’ flagging some calls as SPIT and
others as legitimate. We create a new algorithm called
eMPCK-Means, based on a previous algorithm called
MPCK-Means, which provides linear time performance
with the number of calls. eMPCK-Means includes a pre-
metrics-update step, which contributes to high (> 90%)
detection true positive rates with less than 10% user
feedback data points for three of the four call traces used
here. We found that it is difficult to attain high detection
accuracy based only on features available in the call
establishment phase, which would enable a SPIT call to be
dropped without the user needing to answer the call. This
algorithm pMPCK performs well only with accurate user
feedback for a majority of calls.

7. REFERENCES

[1] VOIPSA, "VoIP Threat Taxonomy," 2008.

[2] Y. S. Wu, S. Bagchi, S. Garg, and N. Singh, "SCIDIVE: a
stateful and cross protocol intrusion detection architecture
for voice-over-IP environments," in DSN, 2004, pp. 433-442.

[3] H. Sengar, D. Wijesekera, H. Wang, and S. Jajodia, "VoIP
Intrusion Detection Through Interacting Protocol State
Machines," in DSN, 2006, pp. 393-402.

[4] C. J. J. Rosenberg, "RFC 5039 : The Session Initiation
Protocol (SIP) and Spam," 2008.

[5] D. Shin, J. Ahn, and C. Shim, "Progressive Multi Gray-
Leveling: A Voice Spam Protection Algorithm," IEEE
Network, vol. 20, pp. 18-24, 2006.

[6] M. Bilenko, S. Basu, and R. J. Mooney, "Integrating
constraints and metric learning in semi-supervised
clustering," in ICML, 2004, pp. 81-88.

[7] J. Quittek, S. Niccolini, S. Tartarelli, M. Stiemerling, M.
Brunner, and T. Ewald, "Detecting SPIT Calls by Checking
Human Communication Patterns," in ICC, 2007, pp. 1979-
1984.

[8] R. MacIntosh and D. Vinokurov, "Detection and mitigation
of spam in IP telephony networks using signaling protocol
analysis," in IEEE/Sarnoff Symposium on Advances in Wired
and Wireless Communication, 2005, pp. 49-52.

[9] P. Kolan and R. Dantu, "Socio-technical defense against
voice spamming," ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 2, 2007.

[10] J. MacQueen, "Some methods for classification and analysis
of multivariate observations," in the Fifth Berkeley
Symposium on Mathematical Statistics and Probability,
1967, p. 14.

[11] P. Haider, U. Brefeld, and T. Scheffer, "Supervised
clustering of streaming data for email batch detection," in
ICML, 2007, pp. 345-352.

[12] M. Sasaki and H. Shinnou, "Spam Detection Using Text
Clustering," in International Conference on Cyberworlds,
2005.

[13] C. J. C. Burges, "A tutorial on support vector machines for
pattern recognition," Data Mining and Knowledge
Discovery, vol. 2, pp. 121-167, 1998.

[14] G. Druck, C. Pal, A. McCallum, and X. Zhu, "Semi-
supervised classification with hybrid
generative/discriminative methods," in KDD, 2007, pp. 280-
289.

[15] K. Bennett and A. Demiriz, "Semi-supervised support vector
machines," Advances in Neural Information processing
systems, pp. 368-374, 1999.

[16] J. Rosenberg, "RFC 3261 - SIP: Session Initiation Protocol,"
2002.

[17] H. Schulzrinne, "RFC 1889 - RTP: A Transport Protocol for
Real-Time Applications," 1996.

[18] N. Grira, M. Crucianu, and N. Boujemaa, "Unsupervised
and Semi-supervised Clustering: a Brief Survey," A Review
of Machine Learning Techniques for Processing Multimedia
Content’, Report of the MUSCLE European Network of
Excellence (FP6), 2004.

[19] T. Finley and T. Joachims, "Supervised clustering with
support vector machines," in ICML, 2005, pp. 217-224.

[20] voip-info.org, "Asterisk SIP Media Path."

