
VoIP Defender: Highly Scalable SIP-based Security
Architecture

Jens Fiedler
Fraunhofer Institute for Open
Communications Systems -

FOKUS
Kaiserin-Augusta-Allee 31

10589 Berlin, Germany
jens.fiedler

@fokus.fraunhofer.de

Tomas Kupka
Fraunhofer Institute for Open
Communications Systems -

FOKUS
Kaiserin-Augusta-Allee 31

10589 Berlin, Germany
tomas.kupka

@fokus.fraunhofer.de

Sven Ehlert
Fraunhofer Institute for Open
Communications Systems -

FOKUS
Kaiserin-Augusta-Allee 31

10589 Berlin, Germany
sven.ehlert

@fokus.fraunhofer.de

Prof. Dr. Thomas
Magedanz

Fraunhofer Institute for Open
Communications Systems -

FOKUS
Kaiserin-Augusta-Allee 31

10589 Berlin, Germany
thomas.magedanz

@fokus.fraunhofer.de

Dr. Dorgham Sisalem
TEKELEC Corp.

Am Borsigturm 11
13507 Berlin, Germany

sisalem@tekelec.com

ABSTRACT
VoIP services are becoming increasingly a big competition
to existing telephony services (POTS / ISDN). The increas-
ing number of customers using VoIP makes VoIP services
a valuable target for attackers that want to bring down the
service, take it over or simply abuse it to distribute their own
content, like SPAM. Hence, the need arises to protect VoIP
services from all kinds of attacks that target network band-
width, server capacity or server architectural constrains. In
this article we present VoIP Defender, a generic security
architecture, called VoIP-Defender, to monitor, detect, an-
alyze and counter attacks relevant for a SIP-based VoIP in-
frastructure. The VoIP-Defender is highly scalable and can
be easily extended with new detection algorithms. Analy-
sis and traffic control can be performed from the SIP layer
down to the transport-, network- and MAC layer. VoIP De-
fender is designed to work fully transparent to clients and
SIP servers, and can analyze and filter traffic in real time,
which we demonstrate with measurements with our imple-
mentation.

1. INTRODUCTION
The Session Initiation Protocol (SIP) [1] has established

itself as the de-facto standard for Voice-over-IP (VoIP) ser-
vices. Several providers are already offering Internet Tele-

ACM COPYRIGHT NOTICE. Copyright c©2007 by the Association for
Computing Machinery, Inc. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

phony services based on SIP. The popularity of SIP will
likely rise even more with the advent of the IP Multimedia
System (IMS) [2], the next-generation telephony network
which is also based on SIP.
SIP is deployed in a client-server infrastructure where SIP
clients (User Agent clients, UAC) contact a central SIP
Proxy (i.e. a server) to manage ongoing sessions. It is a
text based protocol designed to establish or terminate a ses-
sion among two or more partners. The message format is
derived from the HTTP protocol, with message headers and
corresponding values, e.g. “From: user@sip.org” to denote
the sender of a message.
As it is generally deployed in the open internet, SIP infras-
tructures can easily become a target for different attacks
from the outside world, including Denial-of-Service attacks,
Message Tampering, Call Hijacking and other threats [7] [8]
[6].
In this paper we present VoIP Defender, an open security
architecture that is designed to monitor the traffic flow be-
tween SIP servers and external users and proxies. The goal
is to detect attacks directed at the protected SIP servers
and provide a framework for attack prevention / mitigation.
Our focus lies especially on high traffic flooding attacks that
can easily overwhelm a proxy’s resources in terms of CPU
processing power, memory requirements or bandwidth ca-
pacity. Hence, VoIP Defender was designed with scalability
in mind. As such, we presenent a layered solution with dedi-
cated tasks (traffic monitoring, analysis, decision) with each
layer optimized for scalability. With measurements in the
FOKUS security testbed we demonstrate VoIP Defender’s
capabilities to process over 50,000 SIP msgs/s. The SIP
traffic is forwarded to individual intelligent extension mod-
ules which provide monitoring, attack detection or attack
prevention tasks.
In section 2 we explain why an architecture like this is needed.



Section 3 depicts related work. The proposed architecture
is described in section 4. Performance measurements have
been taken and are presented in section 5. Sections 6 and 7
summarize the work and give an outlook to future work.

2. MOTIVATION
To secure a SIP-based network, a service provider has

commonly two different options; Usage of a general IP-based
firewall solution or a dedicated SIP Session Border Con-
troller (SBC).
Traditional firewalls have the capabilities to filter IP traffic
up to the interface transport level. Usually they lack proper
intelligence for efficient message or stream content analysis.
As such functionalities are out of scope for IP firewalls, scal-
ability aspects are only of limited importance, as IP traffic
can be filtered in realtime, even in gigabit networks.
A different approach is the use of a SBC [3] to hide and pro-
tect the internal network infrastructure. This reveals the
existence of the defense entity (the SBC) to the attacker,
and it can attack the SBC directly, if it knows an effec-
tive way to do this. Additional to its standard tasks, the
SBC has to be extended with attack detection algorithms
of currently unknown complexity, which introduces also a
scalability problem to it.
Hence, protection options are limited to a potential scalable
solution that lacks dedicated SIP features, or a SIP-aware
solution that exposes itself directly to potential attackers
and has unspecified scalability features.

3. RELATED WORK
Several researchers have prosed VoIP security solutions to

detect and prevent VoIP-related attacks. However, most of
them focus on algorithm intelligence and don’t take perfor-
mance into account.
Niccolini et al [5] propose a security architecture that per-
forms well up to an incoming traffic load of about 850 mes-
sages per second. Their solution is tested on notebook com-
puters and thus not directly comparable to our approach.
Schlegel et al propose a Spam over internet telephony (SPIT)
prevention framework [12], which focuses only on specific
types off attacks to VoIP services (SPIT).
Sengar et al [4] propose a detection framework based on
Hellinger distance calculation. They argue that a process-
ing speed of 500 messages per second should be sufficient,
based on the fact that many current SIP proxies have a pro-
cessing capacity of 100 messages per second. Clearly, such
an approach would not be feasible within a real distributed
DoS attack.

As the proposed architecture is intended to distribute SIP
traffic according to SIP transaction and even session state,
usual SIP load balancing technologies apply. A basic ap-
proach for load balancing is described in [10]. It proposes
a single load balancer in front of multiple, partition based
SIP servers. The load balancer distributes messages accord-
ing e.g. to the registered user. In order to allow a more
dynamic load balancing, a load-query mechanism is intro-
duced in [9], which allows a better, more dynamic load dis-
tribution among the available servers by interchanging load
metrics to learn the overall load situation and then to chose
a lesser loaded server for new SIP transactions. Figure 1
depicts both approaches.

Figure 1: Static vs. Dynamic load balancing

4. VOIP DEFENDER ARCHITECTURE
In order to protect the Point of Service Provisioning (PoSP),

all traffic addressed to it must be inspected and a decision
must be taken, whether to pass messages or streams to it or
not. Therefore, the basic idea is to insert an Point of Pro-
tection (PoP), as in classic IP firewall scenarios, but with
extended features, tailored to SIP based VoIP signaling traf-
fic. Features are scanning, analysis and filtering functional-
ity, between the PoSP (e.g. SIP server or server farm) and
the potentially offensive outer world, holding a mixture of
legal users and malicious entities. In figure 2, the general

Figure 2: SIP server access

overview is depicted. As pointed out, the PoP must have
substantial more features than a conventional IP firewall, as
it is expected to recognize and counter also complex attacks
on VoIP infrastructures.

4.1 Requirements
We have defined strict requirements for the PoP to achieve

the goal of fast, reliable and effective protection of the PoSP.
Transparency: The PoP must be completely invisible from
the networking point of view. It must not be possible to
gain knowledge about the existence of it by analyzing the
network traffic. If the PoP is visible by some means, it can
be identified and possibly circumvented or even attacked.

• No IP routing. If the PoP acts as a router it modifies
IP packets, therefore its existence can be guessed from
the outside.

• No SIP proxying. A very easy way to intercept SIP
traffic is to act as a proxy and use the Record-Route
feature from SIP to stay in the message path. This,



of course, announces the PoP to every VoIP user, re-
gardless whether it is doing proxying or acts as Back-
to-Back (B2B) User Agent [1]. Even here, the PoP can
be circumvented by addressing the PoSP directly, e.g.
by its IP address.

Line speed: All traffic must be dealt with in real time.
This means that no buffering is allowed. Incoming pack-
ets must be sent out immediately after passing the filtering
rules. Otherwise it would be possible to detect the PoP by
analysis of network delays.
Scalability: The expected types of attacks also include
flooding attacks, which feature a very high bandwidth to-
wards the PoSP. In order to analyze this stream, the archi-
tecture must be capable to handle this stream. Therefore
it must be possible to deploy new capacities into the PoP
easily. DDoS attacks can easily reach into the gigabit per
second area of bandwith.
Independence: To be as usable as possible, the PoP can-
not rely on a special SIP proxy implementation. Hence,
no direct communcation channel is established between the
PoP and the PoSP. As a consequence, the PoP needs to im-
plement a subset of the SIP logic to successfully follow the
operation within the network (e.g. session state changes).
As such, the PoP needs to monitor not only incoming traffic
from the outside world, but also responses from the PoSP
Extensibility: As it is possible that new types of attacks
are discovered, the architecture must be open to allow new
algorithms for detection to be integrated fastly. New fun-
cionality should be added or dropped without changing the
PoP’s architecture.

4.2 Components
The VoIP Defender architecture, as depicted in figure

3, consists of transport level load balancers (TLLB), fil-
ter/scanner nodes (FSN), Analyzers and a Decider. Ad-
ditionally, a central administrative terminal allows user in-
teraction with the architecture. These components are dis-
cussed in detail in the following sections.

Figure 3: VoIP Defender architecture

4.2.1 Transport Level Load Balancer
The TLLB has the purpose to enable the usage of multi-

ple FSNs, as these are expected to be exposed to high net-

work and rule processing load. The TLLB distributes eth-
ernet frames, which hold IP fragments, over multiple FSNs.
Therefore it must be guaranteed, that frames belonging to
the same

• IP packet

• UDP datagram

• TCP stream

are delivered to the same FSN, as they are expected to re-
assemble full SIP messages before applying rules. If e.g. IP
packets for a single TCP stream arrive at different FSNs,
none of them will be able to reconstruct the TCP stream
and the contained SIP message. The TLLB also works in
ethernet bridge mode, thus does not change any incoming
frames. In figure 3 two TLLBs are depicted. This is due to
the fact, that e.g. responses from the PoSP are sent back
to the originator over the same TCP stream, as it was re-
ceived on. Therefore returning TCP messages must pass the
related FSN in order to keep the TCP state consistent.

4.2.2 Filter and Scanner Node
The FSN is probably the most important component for

a good real time behaviour of the whole architecture. Its
primary purpose is to fork incoming and outgoing traffic to-
wards the analyzer nodes (scanning). Its second task is to
apply filtering rules to the incoming traffic. Traffic from the
PoSP is also forked, as input for the analyzer nodes, and
another copy is sent out to the internet, where it is routed
normally. Traffic forking is a requisite to gain high scala-
bility in combination with intelligent detection algorithms.
Otherwise, if traffic would be completely analyzed before
forwardin it to the PoSP, high delays would be introduced,
especially during flooding attacks.
As a platform for the FSN, a high end Linux PC has been
chosen. The structure of the FSN and the distribution of
the entities over kernel and user space are depicted in figure
4. Transparency is achieved by acting as an ethernet bridge,

Figure 4: FSN Entities

which intercepts all traffic on the MAC layer and therefore
does not change anything about the packets. If packets are
allowed to leave the FSN, they leave exactly as they entered



Kernel User Space

IP/UDP/TCP/ICMP yes yes

regexp yes yes

scripts no yes

Table 1: Condition Types

it. This also includes all MAC layer information.
A packet, which has been received by the bridge is stored
in kernel space. It is then replicated and one copy is send
to the protocol reconstruction facility, another copy of the
frame is stored in a frame cache, awaiting its verdict from
the filter rule application.
As packets from the bridge are ethernet frames, IP defrag-
mentation has to be performed in order to gain full IP pack-
ets. After this step, UDP and TCP streams are recon-
structed. During this process, references to the involved
frames in the kernel queue are stored along with the re-
constructed streams. From them, the SIP messages are ob-
tained, which are fed into rule processing and sent to an
analyzer node as well, along with protocol meta data, like
IP source addresses, number of fragments, timing informa-
tion, etc.
The FSN is the second point in the system where scalabil-
ity can be applied. Each FSN has multiple analyzer nodes,
which it can feed with traffic. Analyzers rely on a consistent
feed of SIP messages, therefore it must be granted that mes-
sages belonging to the same VoIP session are processed by
the same Analyzer node. The FSN identifies the “Call-ID”,
“To” and “From” fields from each SIP message and extracts
the tags to form a unique session identifier for matching mes-
sages to sessions. In order to chose an analyzer, it applies a
hashing function to the Call-ID and the From-tag, computes
a=hash mod n with n being the number of analyzer nodes
available. The FSN here acts as a load balancer as described
in section 3.
The extracted messages undergo inspection by the kernel
space rule chains, as well as possible userspace decision. For
this purpose, a dedicated kernel/userspace interface feeds a
custom userspace daemon with messages, which then sends
back verdicts.
Rules consist of conditions and an action to be taken, if the
conditions are met. A condition can be any IP, UDP, TCP
or ICMP property. Additionally, a condition may be a regu-
lar expression, which is applied to a SIP message. Therefore
it is possible to decide about a message also by its content.
A condition can also be a custom script, which gets exe-
cuted by the user space application, inspecting the message
flow. As an example, one could implement a time based
message judge, which drops every n-th message, if a cer-
tain, script-defined, condition is met. Table 4.2.2 opposes
the condition types and possible execution points. Kernel
based rule processing includes filtering by IP, UDP, TCP
and ICMP properties as well as applying regular expressions
to the reconstructed SIP messages. The user space daemon
can additionally execute custom scripts. The verdict of an
applied rule is one of:

1. Accept: The message is harmless, pass it on

2. Drop: The message is malicious, drop it.

3. Continue: Apply further rules until one produces a

final decision about the message.

Rules are uploaded to the FSN via a userspace daemon,
which interacts with the kernel and the userspace rule mes-
sage inspection daemon.

4.2.3 Analyzer
The Analyzer is the first layer of the intelligence of the

detection architecture. It analyzes incoming traffic from the
internet and outgoing traffic from the PoSP. This is neces-
sary to keep track of the state of ongoing sessions.
An analyzer node includes the low level functions for each
detection algorithm in the system. A low level function is
the part of a detection algorithm, which must deal directly
with the message flow. Low level functions are expected to
produce a result, which can be used along with the results
of the other analyzer nodes to decide about the start of an
attack, its status and its end. Analyzer nodes are running
in parallel to allow easy scaling of the analysis load, which
depends on the number and complexity of the deployed de-
tection algorithms, as well as on the expected network load
situation. Figure 5 depicts the components of a single ana-
lyzer node.

Figure 5: Analyzer architecture

Report Server: It receives reports from the FSNs, which
contain SIP messages and meta information about them.
These include source and destination IP addresses, trans-
port protocol and number of IP fragments for the message.
The received message is queued in the Incoming Message
Buffer.
SIP Parser: Incoming message are centrally parsed as SIP
messages by the SIP Parser, which generates data structures
suitable for the processing needs of the installed detection
algorithms. The SIP parser can be programmed by the de-
tection algorithm about the SIP header fields to parse.
Analyze Dispatcher: IT presents each message to the
first-layer parts of the installed analysis algorithms.
Analyze Components: They run tests on the message,
keep statistics and states about transactions, sessions, etc.
They are the parallel part of each algorithm, as they run on
multiple Analyzer nodes. They can now easily apply their
detection techniques and produce an algorithm specific out-
put, describing the current attack situation, according to
that specific algorithm.
Result Client: This entity sends analysis reports from the



Analyze Components to the upper detection layer (Decider).
The reports are specific to each analysis algorithm and con-
tructed by the corresponding Analyze Component.

4.2.4 Decider
The Decider is the upper layer of the intelligence of the

PoSP architecture. It gathers the output from the analyz-
ers and decides about the actual attack situation. It hosts
an entity for each detection algorithm, which is capable to
correlate the output of its specific analyzer bottom half func-
tion. The decider itself can also be scaled up, by deploying
a dedicated decider node for each algorithm. Figure 6 shows
the components of the decider node.

Figure 6: Decider architecture

Result Server: It receives the reports from the first layer
parts of the detection algorithms. Reports wear an algorithm-
ID, which allows the Result Server to trigger the correspond-
ing algorithm specific decider module.
Decider Component: As in the Analyzer, the Decider
also hosts algorithm specific modules. Each decider module
matches a corresponding Analyze Component in the Ana-
lyzer. Decider modules are the upper layer part of each
algorithm. Here each algorithm decides, whether the gath-
ered data indicates an attack, its end or normal behavior.
They also decide what measures need to be taken to counter
it. Countering means to create rules for the FSN, which will
block all malicious traffic to the PoSP matching the rules
created by a decider module. In an attack situation, all
traffic is still delivered to the analyzer nodes. Thus it is pos-
sible to decide, when the attack is over, so the created rules
can be removed.
Rule Cache: The Rule Cache entity features static rules,
which are created by human beings, or were taken from other
systems, where they proved to suppress certain types of at-
tacks (pre-set rules). The Rule Cache also remebers all cus-
tom rules, which have been set by the decider modules. This
enables the Decider to update newly conencting FSNs with
the actual set of rules in charge. Rules consist of a protocol
specific condition, like addresses for IP, or port numbers for
UDP/TCP, but can also be regular expressions for content
matching, or even complex scripts for user space based fil-
tering engines, as introduced in section 4.2.2
Rule Client: This entity is responsible for the communi-
cation with the FSNs. It informs them about new rules, or
if one is deleted. It also upload the full rule set to newly

connecting FSNs, e.g. when they return after a shutdown.
Event Manager: It queues and dispatches events from
timers and messages sent by other entities to the single de-
cider modules.
Timer Control: As detection algorithms may have the
need for time based actions, a programmable Timer Con-
trol modules takes care of generating the appropriate timer
events.
Inter-Algorithm Communication: Decider modules may
depend their decision about an attack to the status of other
detection algorithms. Therefor an algorithm can broadcast
its idea of the state of an attack to other modules. As an ex-
ample, it is thinkable to have a kind of super-decider, which
gives an alert if at least two different algorithms have de-
tected an attack.
As an example for Analyzer and Decider co-operation, take
DoS detection with the CUSUM algorithm [11]. In short,
CUSUM monitors incoming sources, and detects if within a
certain timeframe a flow of unrecognized sources appear. For
the implementation of CUSUM in VoIP Defender, only the
source (IP address) and the reply type from the PsOP (Ac-
knowledge / Deny) are of importance. The Analyzer module
for the CUSUM alorithm only extracts this information from
the stream of SIP messages and forwards only this essential
information to the Decider. The actual CUSUM algorithm
implementation is located at the Decider layer.

4.2.5 Console
The adminstrative console is a the central interaction point

for the user. Here, individually extension modules can be dy-
namically started and stopped and the status of each com-
ponent is delivered to the user. Monitoring, detection and
prevention messages and alarms are also gathered at this
point.

4.3 Interaction
In section 4 we introduced the components of the protec-

tion architecture and their tasks. In this section we discuss
the information interchange behaviour, i.e. which compo-
nent communicates with which other component and what
information is interchanged.
TLLB: Traffic entering and leaving it consists of unmodi-
fied ethernet frames, carrying the PoSP’s payload, the VoIP
signalling traffic, probably SIP.
FSN: Traffic between the FSN and the TLLBs also consists
of unmodified ethernet frames, carrying the PoSP’s payload.
Incoming traffic is potentially filtered (packets are dropped),
outgoing traffic is not suppressed. The observed SIP traf-
fic is sent over multiple TCP connections to the analyzers.
along with the following meta information

• Timestamp when the first frame has been received

• Duration for reception of the whole SIP message

• IP information (source, destination, etc.)

• TCP information (ports, flags, etc.)

The traffic bandwidth sent out by each FSN is at least the
sum of incoming and outgoing traffic, plus the meta infor-
mation.
Analyzer: It receives the FSN’s SIP traffic plus meta infor-
mation. Each Analyzer is connected to at least one decider
node over a TCP connection. The information exchanged



is specific for the installed algorithms. The protocol just al-
lows dispatching of the algorithms.
Decider: The decider node itself has an open TCP con-
nection to each FSN. Rules, consisting of conditions and
resulting verdict, are text based encoded and sent to each
FSN as soon as a decider module installs a rule. The same
is for rule removal. Protocol operations are:

• Install/remove rules

• Set a default policy

• Query rules

• Wildcard delete rules

Console: The central console is connect to each other layer
through a telnet based command interface. Commands can
be issued from a command line or generated through a GUI.

5. MEASUREMENTS
Measurements at the FSN have been recorded in order to

see needs for additional optimization or scalability, as this is
the point where massive load in terms of network traffic (SIP
stream) and processing power (rule application) is expected.
All measurements have been taken at one single FSN node.

5.1 Testbed setup
VoIP Defender exists as a prototype implementation in

the FOKUS security testbed. Performance measurements
have been done here in a private network, to make sure that
only the generated messages are processed and no traffic
disturbs other attached networks. The setup is depicted in
figure 7.

Figure 7: Testbed setup

The message generator can generate UDP messages of pre-
set contents and measure the delay between sending them
out and receiving them back from the target machine. For
ICMP measurements, the standard UNIX command ping

has been used, which uses ICMP echo request and echo re-
sponses (message type 0 and 8) for delay measurement. All
machines are connected by gigabit ethernet with switches
between them.

5.2 RTT
Table 2 lists round trip times for ICMP echo/response

(ping) and UDP ping cycles. The first column shows the
number and type of rule entries in the FSN. Times have been
measured without any FSN in place as reference, as well
as with different numbers of installed rules at two different
sending speeds. The rules have been chosen not to trigger
ever, thus it was made sure that for each packet, the whole
list of rules had to be applied. This test has shown, that
even high numbers of rules only marginally influence the
delay of network frames through the FSN. Opposing that,

the number and complexity of regular expression, applied to
UDP packet content, raises latency dramatically, as regular
expression processing consumes much CPU power.

Setup 1 Packet/s 10 Packets/s
ICMP UDP ICMP UDP
ping ping ping ping

no FSN 0.2 0.28 0.19 0.25
0 0.31 0.33 0.26 0.34
10/IP 0.28 0.36 0.31 0.29
100/IP 0.31 0.4 0.34 0.39
1000/IP 0.4 0.51 0.37 0.47
5000/IP 0.54 0.55 0.51 0.54
10000/IP 1.03 0.92 0.95 0.81
17000/IP 1.7 1.64 1.6 1.52
2500/IP&UDP 0.47 0.59 0.47 0.57
5000/IP&UDP 0.55 0.91 0.53 0.94

regexp = “.*23[a|b].*”
10/regexp n.a. 107.03 n.a. 112.73
100/regexp n.a. 1131.4 n.a. -

regexp = “abc[a|b].*”
10/regexp n.a. 0.73 n.a. 0.8
100/regexp n.a. 2.92 n.a. 2.8

Table 2: Measured round trip times (in ms)

5.3 Throughput
In table 3 the recorded throughput is listed along with the

observed CPU load at the FSN. The data source sends out
a 170 Mbit/s SIP stream, which passes the FSN on its way
to the SIP server.
It turns out that simple, IP properties based rules are pro-
cessed much faster than regular expressions. Therefore, reg-
ular expression influence throughput much more than IP
based rules, as they require much more CPU power.

Setup Throughput Average CPU Load
no rules 170Mbit/s 0.00
100 rules IP 170Mbit/s 0.50
1000 rules IP 130Mbit/s 1.06
1 regexp rule 170Mbit/s 0.03
10 regexp rules 110Mbit/s 0.96
20 regexp rules 70Mbit/s 1.11

Table 3: The Filter Node’s Throughput

6. SUMMARY
In the scope of this work, the highly scalable, reliable and

efficient VoIP Defender architecture for detecting and pre-
venting attacks on VoIP services has been introduced. Spe-
cialized components play together in a scalable way. The
architecture is open for extensions in hardware and soft-
ware, so new detection and prevention algorithms can be
specified, implemented and deployed fastly. In case of high
traffic, new analyzer nodes and FSNs can be installed to deal
with higher loads in terms of algorithmic processing load, fil-
ter rule complexity or message traffic.



Measurements show, that simple IP properties based rule
application is feasible even for many rules, while regular ex-
pression matching is possible, but their number and com-
plexity influences latency and throughput. Thus the use of
regular expressions is an expensive resource.

7. FUTURE WORK
The framework, which has been introduced in this work,

offers a large variety of functionalities for detection algo-
rithms, like SIP parsing, rule management and scalability
features. As now a framework for deploying detection al-
gorithms exist, the focus will be on the development and
enhancement of such detection algorithms.
Measurements have shown, that content related matching
can be improved. A possible way to do this could be to im-
plement specific SIP related content matchers as userspace
filter daemons, as an appropriate interface has been designed
and realized.
The architecture consists of many nodes (FSNs, Analyzers,
Decider). Currently, when scaling up the system, all com-
ponents have to be stopped, reconfigured and restarted to
reflect the new setup. Therefore it would be desirable to add
the feature of a runtime reconfiguration, so that new com-
ponents can be added on the fly. New components could
announce themselves in a kind of a broadcast to the system,
which then reconfigures itself and add the new component.
The same should be for nodes which fail. They should be
taken out of the system by automatic downscaling.

8. REFERENCES
[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A.R.

Johnston, J. Peterson, R. Sparks, M. Handley, E.
Schooler, “SIP: Session Initiation Protocol,” RFC
3261, IETF, June 2002

[2] 3GPP, TS 23.228 “IP Multimedia Subsystem (IMS),”
December 2006

[3] J. Hautakorpi, G. Camarillo, R. Penfield, A.
Hawrylyshen, M. Bhatia, “Requirements from SIP
(Session Initiation Protocol) Session Border Control
Deployments,” http://www.ietf.org/internet-
drafts/draft-camarillo-sipping-sbc-funcs-05.txt, IETF,
October 2006

[4] H. Sengar, H. Wang, D. Wijesekera, and S. Jajodia,
”Fast Detection of Denial of Service Attacks on IP
Telephony,” Proceedings of IEEE IWQoS’2006 , New
Haven, CT, June 2006.

[5] S. Niccolini, R. G. Garroppo, S. Giordano, G. Risi, S.
Ventura, ”SIP Intrusion Detection and Prevention:
Recommendations and Prototype Implementation”, 1st
IEEE Workshop on VoIP Management and Security,
Vancouver, Canada, Apr 2006.

[6] D. Sisalem, J. Kuthan, S. Ehlert, ”Denial of Service
Attacks Targeting a SIP VoIP Infrastructure - Attack
Scenarios and Prevention Mechanisms”, IEEE
Networks Magazine, Vol 20, No. 5, 2006

[7] S. Vuong, Y. Bai, ”A survey of VoIP intrusions and
intrusion detection systems,” 6th International
Conference on Advanced Communication Technology,
2004

[8] D. Geneiatakis; T. Dagiouklas; S. Ehlert; G.
Kambourakis; C. Lambrinoudakis; D. Sisalem and S.
Gritzalis, ”Survey of Security Vulnerrabilities in SIP”,
IEEE Communications Tutorials and Surveys”, Vol. 8,
No. 3, October 2006

[9] G. Kambourakis, D. Geneiatakis, T. Dagiuklas, C.
Lambrinoudakis, S. Gritzalis, “Towards Effective SIP
load balancing: the SNOCER approach,” 3rd Annual
VoIP Security Workshop, June 2006, Berlin, Germany,
ACM Press

[10] K. Singh, H. Schulzrinne, ”Failover and Load Sharing
in SIP Telephony,” in International Symposium on
Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), Philadelphia,
PA, July 2005.

[11] B. Reynolds, D. Ghosal, ”Secure IP Telephony using
Multi-layered Protection”, 10th Annual Network and
Distributed System Security Symposium, San Diego,
California, Feb 2003

[12] R. Schlegel, S. Niccolini, S. Tartarelli, M. Brunner,
”SPam over Internet Telephony (SPIT) Prevention
Framework,” Global Telecommunications Conference,
2006. GLOBECOM ’06. IEEE, Vol., Iss., Nov. 2006


